Меню

Центростремительное ускорение как найти скорость время



Расчет центростремительного ускорения по формуле

Формула расчета центростремительного ускорения:

Расчет центростремительного ускорения если известны скорость движения по окружности и радиус окружности.

Формула расчета скорости центростремительного ускорения:

Определение скорости центростремительного ускорения движения по окружности если известены центростремительное ускорение и радиус окружности.

Формула расчета радиуса окружности центростремительного ускорения:

Найти радиус окружности центростремительного ускорения если известены скорость движения по окружности и центростремительное ускорение.

Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор расчета центростремительного ускорения по простой кинематической формуле. С помощью этого калькулятора вы в один клик сможете определить центростремительное ускорение, скорость движения по окружности и найти радиус окружности.

Источник статьи: http://www.center-pss.ru/math/kinematika/csu.htm

Центростремительное ускорение. Вывод формулы.

Движение по окружности часто встречается в природе и в деятельности человека. По окружности движутся спутники вокруг Земли (при упрощенном рассмотрении, на самом деле по эллиптической орбите), по окружности двигаются детали механизмов, ободы колес, шестерен, движение по окружности возникает при движении машин по закруглению дороги и так далее.

Рассмотрим равномерное движение тела по окружности.

Вектор скорости в таком случае направлен по касательной к окружности, и при движении не меняется по модулю, но, очевидно, изменяется по направлению.

Изобразим такое движение на схеме:

На схеме видно, как точка движется по окружности, из начального положения M переходит последовательно в положения М₁, М₂, М₃. Очевидно, что модуль вектора скорости в этих положениях не изменяется, а вектор всегда направлен по касательной окружности в этой точке.

Рассмотрим внимательнее перемещение точки из положения М в положение М₁ за интервал времени 𝛥t.

Отметим на рисунке векторы скоростей:

Эти скорости по модулю равны:

Найдем изменение скорости. Для этого надо из конечного вектора скорости вычесть вектор скорости в начальной точке:

Среднее ускорение за время 𝛥t по определению (ускорение есть изменение скорости за промежуток времени) будет равно:

Найдем модуль и направление вектора ускорения.

Вывод формулы определения модуля ускорения

На схеме отмечены векторы:

И с помощью векторного вычитания отметим разность векторов скорости:

Для того, чтобы определить модуль среднего ускорения нам необходимо углубиться в геометрию.

Рассмотрим треугольники ОММ₁ и М₁АВ.

Это подобные треугольники. Докажем это:

во-первых, треугольники ОММ₁ и М₁АВ равнобедренные:

У треугольника ОММ₁ стороны ОМ = ОМ₁ (т.к. это радиусы окружности, по которой движется точка).

У треугольника М₁АВ стороны М₁А = АВ — так как это векторы скорости, их длина (модуль) не меняется во время движения.

Во-вторых, у треугольников ОММ₁ и М₁АВ равные углы при вершинах.

Эти углы равны, т.к. сторона ОМ треугольника ОММ₁ перпендикулярна стороне АВ треугольника М₁АВ, а сторона ОМ₁ треугольника ОММ₁ перпендикулярна стороне М₁А треугольника М₁АВ

(ведь ОМ и ОМ₁ — это радиусы окружности, а АВ и М₁А — это векторы скорости, направленные по касательной к окружности, а значит перпендикулярно радиусу).

Из курса геометрии вспомним т еорему об углах с соответственно перпендикулярными сторонами: стороны одного угла соответственно перпендикулярны сторонам другого угла, то такие углы или равны, или в сумме составляют 180º.

В нашем случае очевидно что оба угла острые, соответственно они равны.

Снова вспоминаем курс геометрии, а именно теорему о подобии треугольников: Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

В нашем случае эти условия выполняются, стало быть треугольники ОММ₁ и М₁АВ подобны.

Для подобных треугольников мы можем составить пропорцию:

Вернемся из геометрии к физическому смыслу сторон наших треугольников, и запишем пропорцию в виде:

Разделим обе части равенства на промежуток времени 𝛥t:

Умножим обе части равенства на модуль скорости v:

Но ведь отношение разности скоростей к промежутку времени — это среднее ускорение:

а отношение вектора перемещения к промежутку времени — это средняя скорость:

Но нам необходимо найти модуль мгновенного ускорения. Для этого мы должны взять предельный случай, когда промежуток времени 𝛥t стремится к нулю.

Источник статьи: http://medium.com/dxdy/%D1%86%D0%B5%D0%BD%D1%82%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B5%D0%BC%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5-%D1%83%D1%81%D0%BA%D0%BE%D1%80%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B2%D1%8B%D0%B2%D0%BE%D0%B4-%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B-12ec23fe377e

Центростремительное ускорение

Консультации по выполнению всех типов работ

Что такое центростремительное ускорение

Центростремительным ускорением называется ускорение тела при движении тела по окружности.

Данная величина характеризует, насколько быстро изменяется направление линейной скорости объекта при его движении по окружности.

Обозначается центростремительное ускорение латинской буквой a, так как это векторная величина, обычно ее обозначение условно выглядит так: (vec a)

Единицами измерения в международной системе СИ является м/с 2 .

Силы центростремительная и центробежная, в чем отличия

На любое тело, передвигающееся по круговой траектории, воздействует постоянная сила, которая направлена к центру окружности, описывающей траекторию движения. Эта сила получила название центростремительной.

Центробежная сила представляет собой силу инерции. По третьему закону Исаака Ньютона, на каждое действие приходится равное ему по силе, но противоположное по направлению противодействие. И центробежная сила является той самой силой, которая противоположна центростремительной силе.

Сходства центростремительной и центробежной силы:

  1. Они являются инерциальными.
  2. Возникают всегда при движении тела.
  3. Появляются только парами и всегда уравновешивают друг друга.

Их различия заключаются в следующем:

  1. Центростремительная сила всегда направлена к центру окружности, в то время как центробежная сила противоположна центростремительной по направлению.
  2. Слово «центростремительная» с латинского языка переводится как «искать центр», а «центробежная» — «бежать от центра».

Куда направлен вектор центростремительного ускорения

При передвижении точки по окружности ее скорость направлена по касательной к окружности, а ускорение — по радиусу к центру окружности. Т.е. центростремительное ускорение всегда перпендикулярно скорости.

Вывод формулы центростремительного ускорения

Как найти через угловую и линейную скорость

Центростремительное ускорение, при условии равномерного движения по окружности, можно вычислить с помощью линейной скорости движения.

Центростремительное ускорение можно вычислить через угловую скорость.

Угловой скоростью (omega) называется физическая величина, численно равная отношению угла поворота (varphi) к тому интервалу времени (t), за который этот поворот произошел:

Измеряется величина в рад/с.

Зависимость ускорения от скорости математически выглядит так:

Расчет центростремительного ускорения через радиус

Нужно подобрать материалы для студенческой работы?

Источник статьи: http://wiki.fenix.help/fizika/tsentrostremitelnoye-uskoreniye

Центростремительное ускорение и центростремительная сила

Тело изменяет направление движения, когда движется по окружности. Это говорит о том, что подобное движение происходит под действием некоторой силы. Такую силу называют центростремительной. С ней связано центростремительное ускорение.

Линейная скорость меняется от точки к точке

При движении по окружности вектор линейной скорости (vec) изменяет свое направление (рис. 1). Значит, направления векторов (vec) для соседних точек будут различаться! Но в каждой точке окружности вектор (vec) направлен перпендикулярно радиусу.

Тело, двигаясь по кругу, изменяет направление, в котором движется. А если меняется направление движения, изменяется вектор скорости тела.

  1. Характеристики вектора – это его длина и его направление. Если изменится хотя бы одна из них, говорят, что изменился вектор.
  2. Через красную точку на рисунке 1 проходит ось вращения. По правилу правого винта вдоль оси вращения направлена угловая скорость.

Центростремительная сила – причина движения по окружности

Первый закон Ньютона гласит: пока на тело не действуют другие тела, оно сохраняет свою скорость неизменной. То есть, тело покоится, или движется с постоянной скоростью по прямой.

Тело изменит скорость своего движения по направлению или по модулю, только если на него подействует сила (другое тело).

При движении тела по окружности вектор скорости изменяется по направлению. Значит, на движущееся по окружности тело действует сила.

Эта сила притягивает тело к центру окружности (рис. 2), заставляя тело поворачивать. Поэтому, силу называют центростремительной (стремится к центру). Она направлена к центру окружности по радиусу.

А если эту силу убрать, тело начнет двигаться по прямой с постоянной (одной и той же) скоростью.

Примечание: На любое тело, движущееся по окружности, действует центростремительная сила. Она в каждой точке этой окружности направлена к ее центру по радиусу.

Центростремительное ускорение

Второй закон Ньютона утверждает: если есть сила, появится ускорение.

Сила и ускорение связаны так:

Это ускорение (vec>>) сонаправлено (рис. 3) с вектором силы (vec< F_> >), поэтому, его называют центростремительным ускорением.

Длина центростремительного ускорения отличается от длины вектора силы в (m) раз. Где (m) – это масса точки.

Вектор ускорения (vec>>) направлен по радиусу к центру окружности. Значит, он перпендикулярен вектору (vec) линейной скорости.

Поэтому центростремительное ускорение иногда называют нормальным ускорением.

Примечание: Нормаль – это перпендикуляр. Нормальное, значит, перпендикулярное.

Нормальное ускорение можно вычислить, пользуясь выражением:

​ ( vec> left( frac>> right) ) ​ — центростремительное ускорение;

(v left( frac> right)) — линейная скорость точки;

(R left( text<м>right)) – радиус окружности, по которой движется точка.

(m left( text<кг>right)) – масса точки.

Чем быстрее движется тело, и чем меньше радиус окружности, тем больше нормальное ускорение и центростремительная сила, действующая на тело.

Примечание: Нормальное ускорение есть всегда, когда есть движение по окружности, при этом не важно, меняется ли скорость тела по модулю, или не меняется.

Источник статьи: http://formulki.ru/mehanika/tsentrostremitelnoe-uskorenie-i-tsentrostremitelnaya-sila


Adblock
detector