Меню

Функция y квадратный корень x как найти наибольшее значение



Функция y = корень квадратный из x, ее свойства и график

1) сформировать представление о целесообразности обобщённого исследования зависимостей реальных величин на примере величин, связанных отношением у=

2) формировать способность к построению графика у= и его свойства;

3) повторить и закрепить приёмы устных и письменных вычислений, возведение в квадрат, извлечение квадратного корня.

Оборудование, демонстрационный материал: раздаточный материал.

2. Образец для выполнения задания в группах:

3. Образец для самопроверки самостоятельной работы:

4. Карточка для этапа рефлексии:

1) Я понял, как построить график функции у=.

2) Я могу по графику перечислить его свойства.

3) Я не допустил ошибок в самостоятельной работе.

4) Я допустил ошибки в самостоятельной работе (перечислить эти ошибки и указать их причину).

1. Самоопределение к учебной деятельности

1) включить учащихся в учебную деятельность;

2) определить содержательные рамки урока: продолжаем работать с действительными числами.

Организация учебного процесса на этапе 1:

– Что мы изучали на прошлом уроке? (Мы изучали множество действительных чисел, действия с ними, построили алгоритм для описания свойств функции, повторяли функции изученные в 7 классе).

– Сегодня мы продолжим работать с множеством действительных чисел, функцией.

2. Актуализация знаний и фиксация затруднений в деятельности

1) актуализировать учебное содержание, необходимое и достаточное для восприятия нового материала: функция, независимая переменная, зависимая переменна, графики

y = kx + m, y = kx, y =c, y =x 2 , y = — x 2 ,

2) актуализировать мыслительные операции, необходимые и достаточные для восприятия нового материала: сравнение, анализ, обобщение;

3) зафиксировать все повторяемые понятия и алгоритмы в виде схем и символов;

4) зафиксировать индивидуальное затруднение в деятельности, демонстрирующее на личностно значимом уровне недостаточность имеющихся знаний.

Организация учебного процесса на этапе 2:

1. Давайте вспомним как можно задать зависимости между величинами? (С помощью текста, формулы, таблицы, графика)

2. Что называется функцией? (Зависимость между двумя величинами, где каждому значению одной переменной соответствует единственное значение другой переменной y = f(x)).

Как называется х? (Независимая переменная — аргумент)

Как называется у? (Зависимая переменная).

3. В 7- м классе мы изучили функции? (y = kx + m, y = kx, y =c, y =x 2 , y = — x 2 , ).

Что является графиком функций y = kx + m, y =x 2 , y = ?

3. Выявление причин затруднений и постановка цели деятельности

1) организовать коммуникативное взаимодействие, в ходе которого выявляется и фиксируется отличительное свойство задания, вызвавшего затруднение в учебной деятельности;

2) согласовать цель и тему урока.

Организация учебного процесса на этапе 3:

– Что особенного в этом задании? (Зависимость задана формулой y = с которой мы еще не встречались).

– Какая цель урока? (Познакомиться с функцией y = , ее свойствами и графиком. Функцией в таблице определять вид зависимости, строить формулу и график.)

– Можно сформулировать тему урока? (Функция у=, ее свойства и график).

4. Построение проекта выхода из затруднения

1) организовать коммуникативное взаимодействие для построения нового способа действия, устраняющего причину выявленного затруднения;

2) зафиксировать новый способ действия в знаковой, вербальной форме и с помощью эталона.

Организация учебного процесса на этапе 4:

Работу на этапе можно организовать по группам, предложив группам построить график y = , затем проанализировать получившиеся результаты. Также группам можно предложить по алгоритму описать свойства данной функции.

5. Первичное закрепление во внешней речи

Цель этапа: зафиксировать изученное учебное содержание во внешней речи.

Организация учебного процесса на этапе 5:

Постройте график у= — и опишите его свойства.

Свойства у= — .

1.Область определения функции.

2.Область значений функции.

Источник статьи: http://urok.1sept.ru/articles/605153

Функция y = √x. Свойства и график

График и свойства функции $y = sqrt$

Составим таблицу для расчёта значений функции $y = sqrt$.

Отметим полученные точки на координатной плоскости и соединим их кривой:

1. Область определения $x in [0;+infty)$ — все неотрицательные действительные числа.

2. Область значений $y in [0;+infty)$ — все неотрицательные действительные числа.

3. Наименьшее значение функции y = 0 при x = 0.

4. Функция возрастает на всей области определения.

Т.к. функция возрастает, при сравнении возводим корни в квадрат; знак сохраняется:

Если сравнить полученную кривую с графиком параболы $y = x^2$ (см. §18 данного справочника), то график $y = sqrt$ симметричен положительной ветви параболы, ось симметрии – биссектриса 1-й четверти координатной плоскости.

Таким образом, график функции $y = sqrt$ — это ветвь параболы.

Примеры

Пример 1. Используя графики функций $y = sqrt$, y = x и $y = x^2$, расположите числа в порядке возрастания. Сделайте вывод.

Источник статьи: http://reshator.com/sprav/algebra/8-klass/funkciya-y-x-i-eyo-grafik/

Урок-практикум «Графическое решение уравнений, содержащих функцию y=√х (функцию квадратного корня)». 8-й класс

Базовый учебник: Алгебра 8 класс. Учебник для общеобразовательных учреждений/ А. Г. Мордкович.

Цель урока: применить алгоритм решения уравнений графически к функции у = .

Задачи:

  • Обучающая: способствовать закреплению знаний свойств функции у = , умение строить график этой функции, использовать алгоритм графического решения уравнений применительно к графику квадратного корня из неотрицательного числа.
  • Развивающая: развитие умения правильно оперировать полученными знаниями, логически мыслить; развитие инициативы, умения принимать решения, не останавливаться на достигнутом; работа на интерактивной доске, познавательная активность.
  • Воспитывающая: воспитание познавательного интереса к предмету; к самостоятельности при решении учебных задач; воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок практикум.

Методы:

  • словестные: фронтальная работа
  • наглядные алгоритм, графики.
  • практические: индивидуальная, парная и групповая работа, тренировочная самостоятельная работа.

Оборудование: учебник, рабочая тетрадь, раздаточный материал, школьная доска, интерактивная доска.

1. Организационный момент. 1 мин

2. Проверка домашнего задания. 5 мин

3. Актуализация знаний. Устная работа с классом. 7 мин

4. Закрепление материала 20 мин

5. Тренировочная самостоятельная работа. 8 мин

6. Постановка домашнего задания. 3 мин

1. Организационный момент.

2. Проверка домашнего задания. (Учащиеся проверяют домашнюю работу, сверяясь с эталоном, оценивают правильность и полноту выполнения согласно критериям, ставят оценку).

Для №13.3 Сопоставьте график который получился у вас дома с одним из графиков. Слайд 2. Из данных утверждений (приложение 1 у каждого ученика) выберите те свойства, которые подходят для функции у = — :

С помощью графика найдите: Слайд 3

а) значения у при х = 1; ; 9; (выборочно)

б) значения х, если у = 0; -2; -4; (выборочно)

в) наименьшее и наибольшее значения функции на отрезке ;

г) при каких значениях х график функции расположен выше прямой у = -2. Ниже прямой у = -2.

3. Актуализация знаний. Устная работа с классом.

1. Принадлежит ли графику функции у = точки

А(2; ); В(1; 0); С(6,25; 2,5); Д(-9; 3).Слайд 4

2. Найдите наименьшее и наибольшее значение функции у = Слайд 5

а) на отрезке ;

в) на луче [0; )

3. Решите уравнение по заданному графику: х 2 = х +2. Слайд 6

Учащиеся вспоминают (7 класс) алгоритм решения уравнений данного типа, проговаривая, что является корнем уравнения. Как данное задание мы будем применять на уроке.

Ученики говорят тему урока(на доске записана), формулируют цель,

Задание 1. Итак, повторив алгоритм решения уравнений графически выполним задание № 13.9 (б).

(ученик у доски, остальные в тетради)

= 6 – х;

1) Рассмотрим две функции у = и у = 6 — х

2) Построим график функции у = ,

3) Построим график функции у = 6 – х,

4) По графику устанавливаем, что графики пересекаются в одной точке А(4; 2). Проверим принадлежность данной точки нашим функциям.

Задание 2 Решить уравнение графически: два человека у доски остальные на местах выполняют соответственно свои варианты самостоятельно. Совместно устраняют в ходе проверки обнаруженные пробелы (на доске и на листах учеников готовая памятка с построенным графиком линейной функции). Построение графика квадратного корня ученики выполняют самостоятельно. И записывают ответ.

Памятка 1 вариант

а) – = х – 2

Оцените себя, отметив уровень этого показателя. Понимание: – ______________+

Памятка 2 вариант

б) — = 2 – 3х

Оцените себя, отметив уровень этого показателя. Понимание: – ______________+

Задание 3. Решить графически систему уравнений

(работа выполняется в парах используя приложение № 2)

После выполнения задания учащиеся проверяют свое решение, сравнивая с эталоном. Слайд 8

Встаньте те кто справился с данным заданием.

Физкультминутка для глаз. Слайд 9

Задание 4. Работа в группах(задания дифференцированы, приложение 3): Слайд 10

Задание 1 группе: Докажите, что графики функций у = и у = х + 0,5 не имеют общих точек. Слайд 11

Чтобы доказать, что графики функций y = и у = х + 0,5 не имеют общих точек, достаточно их построить.

Задание 2 группе: Сколько корней имеет данное уравнение = х + b Слайд 12

а) Построим график функции y = и будем относительно него передвигать прямые вида y = x + b. Это параллельные прямые, которые образуют острый угол с положительным направлением оси абсцисс.

Таким образом, очевидно, что уравнение = x + b может иметь один, два корня, а может и не иметь корней.

Задание 3 группе: Сколько корней имеет данное уравнение = — х + b

Прямые вида y = –x + b – это параллельные прямые, которые образуют тупой угол с положительным направлением оси абсцисс.

Получаем, что уравнение = –x + b имеет либо один корень, либо не имеет корней.

Обсуждение решений каждой группы.( Для готовых графиков квадратного корня на интерактивной доске учащиеся показывают свои решения)

5. Тренировочная самостоятельная работа.

В а р и а н т 1

1 . По графику функции у = найдите:

а) значение функции при х = 3, у =____

б) значение аргумента, которому соответствует значение y = 1,8; х = _____

2. Принадлежит ли графику функции y = точка:

а) А (36; 6); ______ б) В (–9; 3)_______?

3. Решите уравнение графически — = — х

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

В а р и а н т 2

1. По графику функции y = найдите:

а) значение функции при х = 5; у =

б) значение аргумента, которому соответствует значение у = 1,5; х =

2. Принадлежит ли графику функции y = — точка:

а) А (81; -9)______ б) В (–16; 4)_______

3. Решите уравнение графически = х

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

Проверяем работу с помощью эталона. Слайд 13 Выясняем проблемы по данной теме.

6. Постановка домашнего задания.

№ 13.9(г), № 13.11(г), № 13.16(рис 7 опишите свойства функции)

7. Рефлексия.

На листочках с самостоятельной работой поставьте:

1 – если на уроке вам было интересно и понятно;

2 – интересно, но не понятно;

3 – не интересно, но понятно;

4 – не интересно, не понятно.

8. Итог урока.

Урок я хочу закончить словами древнегреческого ученого Фалеса:

Что приятнее всего? Достичь желаемого.

Я думаю, мы с вами достигли желаемого? Еще раз вспомнли функцию квадратного корня из неотрицательного числа и применили алгоритм решения уравнения графически к этой функции. Но ребята, кроме у = в дальнейшем мы будем рассматривать более сложные функции, например у = у = -1 у = +5.

Так что перспектива развития ваших знаний велика. Дерзайте.

Приложение № 1

Для номера 13.3 Сопоставьте график который получился у вас дома с одним из графиков. Слайд 2

Из данных утверждений выберите те свойства, которые подходят для функции у = — :

  1. Область определения функции – луч [0; + )
  2. Область определения функции – луч ( + ; 0]
  3. у = 0 при х = 0, у 0
  4. Функция убывает на луче [0; + )
  5. Функция возрастает на луче [0; + )
  6. унаиб = 0, унаим не существует
  7. Функция непрерывна на луче [0; + )
  8. Область значения функции – луч [0; + )
  9. Область значения функции – луч (- ; 0]
  10. Функция выпукла вниз.
  11. Функция выпукла вверх.

Приложение 2

Работа в парах Задание № 3

Решите графически систему уравнений:

Приложение 3

Работа в группах Задание № 4

Задание 1 группе: Докажите, что графики функций у = и у = х + 0,5 не имеют общих точек.

Задание 2 группе: Сколько корней имеет данное уравнение = х + b

Задание 3 группе: Сколько корней имеет данное уравнение = — х + b

Источник статьи: http://urok.1sept.ru/articles/659649


Adblock
detector