Меню

Формулы как найти электрическую емкость конденсатора



Все Формулы

Все Формулы по Физике здесь

Ёмкость конденсатора

Электрическая ёмкость — характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению — конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Ёмкость цилиндрического конденсатора :

Ёмкость плоского конденсатора :

Емкость сферического конденсатора :

В формуле мы использовали :

C — Электрическая ёмкость (ёмкость конденсатора)

U — Потенциал проводника (Напряжение)

— Относительная диэлектрическая проницаемость

Источник статьи: http://xn—-ctbjzeloexg6f.xn--p1ai/%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D1%82%D0%B2%D0%BE-%D0%B8-%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%B7%D0%BC/%D1%91%D0%BC%D0%BA%D0%BE%D1%81%D1%82%D1%8C-%D0%BA%D0%BE%D0%BD%D0%B4%D0%B5%D0%BD%D1%81%D0%B0%D1%82%D0%BE%D1%80%D0%B0.html

Чему равна электроемкость конденсатора?

Электроемкость конденсатора – это характеристика двух проводников, которые находятся в теле устройства. Эта величина не зависит от номинала заряда и величины его напряжения. На нее влияют геометрия и габариты самых проводников, их месторасположения относительно друг друга, а также технических характеристик диэлектрика, который находится между ними и его свойств.

Большая часть этих радиодеталей имеют плоский вид. В качестве проводников используются пластины из алюминия или фольги из него. В качестве диэлектрика выступает бумага, пропитанная парафином или слюда. Они так и называются – слюдяные, бумажные или воздушные.

В данной статьи рассмотрены все вопросы по расчеты электроемкости конденсаторов. В качестве бонуса. в конце статьи читатель найдет видеоролик по теме и интересный материал, расчету электроемкости.

Электроемкость

Электроемкость — это скалярная величина, характеризующая способность проводника накапливать электрический заряд.

  • не зависит от q и U;
  • зависит от геометрических размеров проводника, их формы, взаимного расположения, электрических свойств среды между проводниками.

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу:

единица измерения емкости в СИ: Ф (фарад)

Конденсатор обладает свойством накапливать и сохранять электрическую энергию. Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники наз. обкладками конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками. Основные слагаемые электроемкости представлены на рисунке ниже:

Обозначение на электрических схемах:

  • Все электрическое поле сосредоточено внутри конденсатора.
  • Заряд конденсатора — это абсолютное значение заряда одной из обкладок конденсатора.
  • по виду диэлектрика — воздушные, слюдяные, керамические, электролитические.
  • по форме обкладок — плоские, сферические.
  • по величине емкости — постоянные, переменные (подстроечные).

Электроемкость плоского конденсатора

где S — площадь пластины (обкладки) конденсатора

  • d — расстояние между пластинами
  • εо — электрическая постоянная

ε — диэлектрическая проницаемость диэлектрика

Конденсатор — это система заряженных тел обладает энергией.

Энергия любого конденсатора:

где С — емкость конденсатора, (Ф) W— энергия (Дж)
q — заряд конденсатора, (Кл)
U — напряжение на обкладках конденсатора, (В

Электрическая емкость конденсатора

Дальнейшие опыты с распределением электричества по поверхности наэлектризованного проводника, проводимые Кулоном и другими естествоиспытателями, позволили установить, что равномерное распределение электричества имеет место только на правильной шаровой поверхности. В общем случае заряд неравномерен и зависит от формы проводника, будучи больше в местах большей кривизны. Отношение количества электричества на части поверхности проводника к величине этой поверхности назвали плотностью (толщиной) электрического слоя. Экспериментально было установлено, что электрическая плотность и электрическая сила особенно велики в местах поверхности, имеющих наибольшую кривизну, особенно на остриях.

Величину, характеризующую зависимость потенциала наэлектризованного проводника от его размеров, формы и окружающей среды, называют электроемкостью проводника и обозначают буквой С. Электроемкость проводника измеряется количеством электричества, необходимым для повышения потенциала этого проводника на единицу:

За единицу электроемкости в системе СИ принимается 1 фарада (1 Ф). Фарадой называется электроемкость проводника, которому для повышения его потенциала на один вольт нужно сообщить один кулон электричества. Электроемкостью, равной 1 Ф, обладал бы шар радиусом 9·10 6 км, что в 23 раза больше расстояния от Земли до Луны. Если проводник соединить с источником электричества определенного потенциала, то проводник получит электрический заряд, зависящий от емкости проводника. Его емкость, а, следовательно, и количество электричества, которым он заряжается, увеличиваются, если приблизить к нему второй проводник, соединенный с землей.

Конструкция, состоящая из двух проводников, разделенных изолятором, с электрическим полем между ними, все силовые линии которого начинаются на одном проводнике, а заканчиваются на другом, была названа электрическим конденсатором. При этом оба проводника называются обкладками, а изолирующая прокладка – диэлектриком. Процесс накопления зарядов на обкладках конденсатора называется его зарядкой. При зарядке на обеих обкладках накапливаются равные по величине и противоположные по знаку заряды.

Поскольку электрическое поле заряженного конденсатора сосредоточено в пространстве между его обкладками, то электроемкость конденсатора не зависит от окружающих тел. Электроемкость конденсатора измеряется отношением количества электричества на одной из обкладок к разности потенциалов между обкладками:

1 Ф – электроемкость такого конденсатора, который может быть заряжен количеством электричества, равным 1 Кл, до разности потенциалов между обкладками, равной 1 В. Например, электрическая емкость плоского конденсатора в системе СИ определяется по соотношению:

С =εε 0 S/ d, где ε – диэлектрическая проницаемость материала, находящегося между обкладками конденсатора; ε 0 – диэлектрическая проницаемость вакуума; S – величина площади поверхности пластины (меньшей, если они не равны); d – расстояние между пластинами.

Если обкладки заряженного конденсатора соединить проводником, то заряды будут переходить с одной обкладки на другую и нейтрализуют друг друга. Этот процесс называется разрядкой конденсатора. Каждый конденсатор рассчитан на определенное напряжение. Если напряжение между обкладками станет слишком большим, то разрядка может произойти и непосредственно через диэлектрик (без соединительного проводника), т.е. получится пробой диэлектрика.

Пробитый конденсатор к дальнейшему употреблению не пригоден. Для получения электроемкости нужной величины конденсаторы соединяют в батарею. На практике встречается как параллельное, так и последовательное соединение конденсаторов.

Единицы измерения

Физическая величина, определяемая отношением заряда q одной из пластин конденсатора к напряжению между обкладками конденсатора, называется электроемкостью конденсатора:

При неизменном расположении пластин электроемкость конденсатора является постоянной величиной при любом заряде на пластинах.
Единица электроемкости в международной системе – фарад (Ф). Электроемкостью 1 Ф обладает такой конденсатор, напряжение между обкладками которого равно 1 В при сообщении обкладкам разноименных зарядов по 1 Кл. . В практике широко используются дольные единицы электроемкости – микрофарад (мкФ), нанофарад (нФ) и пикофарад (пФ):

  • 1 мкФ = 10 -6 Ф;
  • 1 нФ = 10 -9 Ф;
  • 1 пФ = 10 -12 Ф.

Электроемкость конденсатора прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между обкладками. При введении диэлектрика между обкладками конденсатора его электроемкость увеличивается в e раз. Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U. Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками. Простейший конденсатор – система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Такой конденсатор называется плоским. Электрическое поле плоского конденсатора в основном локализовано между пластинами (рисунок 1); однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками (рисунок 2). Но в других задачах пренебрежение полем рассеяния может привести к грубым ошибкам, так как при этом нарушается потенциальный характер электрического поля.

Согласно принципу суперпозиции, напряженность поля, создаваемого обеими пластинами, равна сумме напряженностей и полей каждой из пластин. Вне пластин вектора и направлены в разные стороны, и поэтому E = 0. Поверхностная плотность σ заряда пластин равна q/S, где q – заряд, а S – площадь каждой пластины. Разность потенциалов Δφ между пластинами в однородном электрическом поле равна Ed, где d – расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз. Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Потенциал φ (отсчитываемый от нулевого уровня на бесконечности) пропорционален заряду q проводника, т.е. отношение q к φ не зависит от q. Это позволяет ввести понятие электроемкости. С уединенного проводника, которая равна отношению заряда проводника к потенциалу:

Таким образом, чем больше электроемкость, тем больший заряд может накопить проводник при данном φ. Электроемкость определяется геометрическими размерами проводника, его формой и электрическими свойства окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. В частности, электроемкость проводящего шара в вакууме равна его радиусу. Наличие вблизи проводника других тел изменяет его электроемкость, так как потенциал проводника зависит и от электрических полей, создаваемых зарядами, наведенными в окружающих телах вследствие электростатической индукции.

В системе ед. СГСЭ электроемкость измеряется в сантиметрах, в СИ – в фарадах: 1Ф = 9*10 11 см.
Понятие электроемкости относится также к системе проводников, в частности двух проводников, разделённых тонким слоем диэлектрика, – электрическому конденсатору. Электроемкость конденсатора (взаимная ёмкость его обкладок)

где q – заряд одной из обкладок (заряды обкладок по абсолютной величине равны), φ1 – φ2 – разность потенциалов между обкладками. Электроемкость конденсатора практически не зависит от наличия окружающих тел и может достигать очень большой величины при малых геометрических размерах конденсаторов.

Заключение

Более подробно об электроемкости конденсаторов можно узнать прочитав материал: “Электроемкость: как рассчитать”. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Источник статьи: http://electroinfo.net/teorija/chemu-ravna-jelektroemkost-kondensatora.html


Adblock
detector