Меню

Формула периметра прямоугольника и как найти одну из сторон



Калькулятор для расчета периметра прямоугольника

Как найти периметр прямоугольника?

Ниже в статье вы узнаете что такое и как найти периметр прямоугольника если известны его стороны. А также как найти стороны прямоугольника, если известен его периметр. И ещё одна интересная строительная прикладная задача.

Периметр — это длина геометрической фигуры по её внешней границе.

Периметр прямоугольника — это сумма длин его сторон.

Формулы для вычисления периметра прямоугольника: P = 2*(a+b) или P = a + a + b + b.

Резюмируем! Для того чтобы вычислить периметр прямоугольника необходимо сложить все его стороны.

Типовые математические и практические задачи:

Исходные данные: Определить периметр прямоугольника с длинами сторон 5 см и 10 см.

Согласно формуле периметр прямоугольника равен = 2 * (5 + 10) = 30 см.

Исходные данные: Определить стороны прямоугольника выраженные целыми числами, если периметр прямоугольника равен 10.

По формуле определяем сумму длин сторон (a + b) = P / 2 = 10 / 2 = 5
Целыми значениями сторон могут быть только значения 1 + 4 = 5 и 2 + 3 = 5

Ответ: Длины сторон могут быть только 2 и 3 или 1 и 4.

Исходные данные: Определить число плинтусов в достаточном количестве для ремонта пола в комнате длиной 5 метров и шириной 3 метра, если длина одного плинтуса равна 3 метра.

Периметр комнаты = 2 * (5 + 3 ) = 16 метров
Количество плинтусов = 16 / 3 = 5,33 штук
Обычно в строительных магазинах плинтусы продаются не погонными метрами, а поштучно. Поэтому принимаем следующее целое число. Это шесть.

Ответ: Количество плинтусов 6 штук.

Решение задачи вычисления периметра является достаточно простой математической задачей, но имеющей очень важное практическое значение например в строительстве или генеральном планировании территории.

На этой странице представлен самый простой онлайн калькулятор для расчета периметра прямоугольника. С помощью этой программы вы в один клик сможете найти периметр прямоугольника, если известны его длина и ширина.

Источник статьи: http://www.center-pss.ru/math/priamougolnikperim.htm

Как найти периметр прямоугольника

Консультации по выполнению всех типов работ

Периметр прямоугольника

Прямоугольник — это четырехугольник, у которого все четыре угла прямые, то есть, составляют 90 градусов. Частным случаем прямоугольника могут быть квадрат или ромб.

Периметр прямоугольника — это сумма длин всех его ребер.

Основные свойства прямоугольника:

  • противоположные стороны фигуры равны и параллельны друг другу;
  • сумма всех углов равна 360 градусов;
  • диагонали прямоугольника равны по длине и точкой пересечения делятся пополам;
  • диагонали делят фигуру на два одинаковых прямоугольных треугольника;
  • по теореме Пифагора, квадрат диагонали прямоугольника равен сумме квадратов двух его соседних ребер;
  • стороны рассматриваемого четырехугольника также являются его высотами;
  • точка пересечения диагоналей — это центр прямоугольника и также центр вписанной окружности;
  • диагональ этого четырехугольника — это диаметр описанной окружности;
  • вокруг него всегда можно описать окружность.

Варианты нахождения периметра прямоугольника

По сторонам

Если нам известны все стороны прямоугольника (или две смежные), мы можем использовать следующую формулу для нахождения суммы длин всех ребер:

где (a) и (b) — это две соседние стороны фигуры.

По любой стороне и площади

Зная значение любого из ребер четырехугольника и его площадь, мы можем найти значение второго и периметр фигуры.

Так как площадь прямоугольника — это произведение двух его смежных сторон ((S=atimes b)) , чтобы найти неизвестную сторону, нужно поделить площадь на известную величину: (b=frac Sa) .

Получается, что формула для расчета (P) рассматриваемой фигуры будет выглядеть следующим образом:

По любой стороне и диагонали

В случае, если мы знаем длину одного из ребер и диагональ данного четырехугольника, мы можем найти вторую сторону с помощью теоремы Пифагора.

где (d) диагональ прямоугольника, а (b) неизвестная сторона.

Чтобы рассчитать сумму длин всех сторон, нужно воспользоваться формулой:

По любой стороне и радиусу описанной окружности

Когда нам известна одна из сторон и радиус описанной окружности вокруг прямоугольника, мы можем узнать его неизвестное ребро. Из свойств прямоугольника помним, что точка пересечения диагоналей фигуры — это центр описанной окружности. Это значит, что 1/2 диагонали — это радиус этой окружности. Таким образом, по теореме Пифагора мы можем узнать неизвестную сторону прямоугольника:

где (R) радиус описанной окружности.

Тогда формула для расчета P будет выглядеть так:

Примеры решения задач

Задача 1

Известно, что стороны прямоугольника равны 5 см и 7 см. Найти его периметр.

Применяем самую первую формулу для расчета:

Задача 2

Мы знаем, что площадь четырехугольника с прямыми углами составляет 24 (см^2) , одна из его сторон равна 6 см. Вычислить Р фигуры.

Берем формулу (P=2(frac Sa+a)) и подставляем известные значения:

Задача 3

Дан прямоугольник со стороной 3 см и диагональю 5 см. Нужно высчитать P данной фигуры.

Вспоминаем формулу для расчета (P=2(a+sqrt)) и вставляем известные величины:

Задача 4

Вокруг прямоугольника с ребром 3 см описали окружность с радиусом 5 см. Определить P заданной фигуры.

В этом случае для расчета суммы длин всех сторон применяем формулу (P=2(a+sqrt<4R^2-a^2>)) . Используем известные значения и получаем:

Квалифицированная помощь от опытных авторов

Источник статьи: http://wiki.fenix.help/matematika/perimetr-pryamougolnika

Как найти стороны прямоугольника при известных периметре и площади

В этой статье я хочу рассмотреть две математические задачи повышенной сложности для 4 класса.

Видеоурок по теме этой статьи можно посмотреть по ссылке.

Площадь прямоугольника 32 см 2 , а периметр – 24 см. Найти стороны прямоугольника.

Площадь прямоугольника 126 см 2 , а периметр – 46 см. Найти его длину и ширину.

С этими задачами, я уверен, без труда справится более старший школьник, знакомый с решением системы уравнений и квадратных уравнений. Кстати, подобная задача есть в учебнике по геометрии Атанасяна, глава VI № 454 пункт б за 8 класс.

Но почему же эти задачи указаны в математических сборниках как задачи для 4 класса, в котором еще не изучают алгебраические понятия и методы решения? Нет ли здесь ошибки?

Нет, никакой ошибки здесь нет. Эти, и аналогичные им задачи можно решить и без использования алгебраических знаний.

Первое, что приходит на ум – это по значению периметра прямоугольника (а периметр – это удвоенная сумма двух его сторон) найти сумму двух сторон, а после простым подбором определить два числа, произведение которых равно данной по условию площади прямоугольника, а сумма – половине периметра.

Я хочу показать вам математически точное решение, которое безо всяких подборов приводит к правильному результату.

Нахождение сторон прямоугольника при известных периметре и площади

Площадь прямоугольника 32 см 2 , а периметр – 24 см. Найти стороны прямоугольника.

Как известно, периметр прямоугольника находится по формуле ( P=2cdot (a+b)>) , площадь – по формуле ( S=acdot b>) .

Так как периметр прямоугольника – это удвоенное произведение суммы двух сторон прямоугольника, то мы можем найти эту сумму, разделив значение периметра на 2:

А дальше мы рассуждаем так.

Найдем максимально возможную площадь прямоугольника при данном значении суммы двух его сторон, то есть, полупериметра. Так как полупериметр – четное число, то очевидно, что прямоугольник с максимально возможным значением площади при сумме его двух сторон, равной 12 , – это квадрат со стороной ( 12 : 2 = 6>) см.

Тогда площадь этого квадрата равна

По условию нашей задачи площадь прямоугольника составляет 32 см 2 . Находим разницу между полученной площадью квадрата и заданной площадью прямоугольника.

Это значит, что нам нужно изменить стороны рассматриваемого квадрата со стороной 6 см так, чтобы уменьшилась его площадь, но не изменился периметр.

Так как квадрат имеет самую большую площадь среди прямоугольников с одинаковым периметром, то для уменьшения площади нам нужно увеличить разницу между его длиной и шириной. То есть, ширину уменьшить, а длину увеличить на одно и то же число.

Площадь 4 см 2 – это квадрат со стороной 2 см. Это и есть нужное нам число.

Тогда, ширина искомого прямоугольника будет равна:

Проверим найденные длины сторон, определив периметр и площадь полученного прямоугольника:

Теперь рассмотрим вторую задачу.

Площадь прямоугольника 126 см 2 , а периметр – 46 см. Найти его длину и ширину.

Находим полупериметр, то есть, сумму двух сторон прямоугольника.

Найдем максимально возможную площадь прямоугольника при данном значении суммы двух его сторон, то есть, полупериметра. Так как полупериметр – нечетное число, значит, нам нужен такой прямоугольник, разница между значениями ширины и длины которого в натуральных числах минимальна, то есть, единица. Это прямоугольник со сторонами 11 и 12 , т.к. ( 23=11+12>).

Площадь такого прямоугольника равна:

Разница между полученной площадью и заданной по условию задачи составляет:

6 см 2 – это площадь прямоугольника со сторонами 2 и 3 см. Чтобы уменьшить площадь нашего прямоугольника со сторонами 11 см и 12 см, нужно увеличить разницу между значениями этих сторон, а именно, уменьшить его короткую сторону, то есть, ширину. При этом длину также нужно увеличить на это же число, чтобы сохранить значение периметра.

Для этого ширину 11 мы уменьшаем на одноименное значение, то есть, тоже на ширину прямоугольника с площадью 6 см 2 , а именно, на 2 .

Кстати, подумайте и напишите в комментарии к этой статье, почему мы рассматриваем разницу в площадях именно как прямоугольник с максимальной площадью (например, в этой задаче как прямоугольник 2 на 3 , а не 1 на 6 , а в первой – как квадрат 2 на 2 , а не прямоугольник 1 на 4 ), и почему ширину уменьшаем именно на ширину (в этой задаче 11 – 2 , а не 11 – 3 ).

Находим ширину искомого прямоугольника:

Длину нужно увеличить также на это число, чтобы не изменился периметр прямоугольника:

И эта задача решена тоже верно.

На этом все. Не забудьте написать в комментарии ответы на вопросы, почему мы рассматриваем разницу в площадях именно как прямоугольник с максимальной площадью, и почему ширину уменьшаем именно на ширину.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 0 / 5. Количество оценок: 0

Оценок пока нет. Поставьте оценку первым.

Так как вы нашли эту публикацию полезной.

Подписывайтесь на нас в соцсетях!

Сожалеем, что вы поставили низкую оценку!

Позвольте нам стать лучше!

Расскажите, как нам стать лучше? Отправить отзыв

Источник статьи: http://easy-math.ru/how-to-find-the-sides-of-a-rectangle-with-a-known-perimeter-and-area/


Adblock
detector