Меню

Формула корня если дискриминант равен 0 то как найти корень



Узнать ещё

Знание — сила. Познавательная информация

Дискриминант 0

Эта подсказка поможет легко запомнить формулу корней квадратного уравнения (точнее, корня, ведь в этом случае он один), если дискриминант равен 0.

Учить эту формулу не нужно!

Итак, в процессе решения квадратного уравнения

находим дискриминант квадратного уравнения по формуле:

Если дискриминант больше нуля (D>0), то квадратное уравнение имеет два корня:

Достаточно запомнить только одну эту формулу, и использовать ее же, если дискриминант равен 0. Ведь квадратный корень из нуля равен нулю, а от прибавления или вычитания нуля число не изменится:

Таким образом, если дискриминант равен 0 (D=0), корень квадратного уравнения равен

Источник статьи: http://www.uznateshe.ru/diskriminant-0/

Решение квадратных уравнений

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

— это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда — это просто число D = b 2 − 4 ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D D = 0, есть ровно один корень;
  2. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8 x + 12 = 0;
  2. 5 x 2 + 3 x + 7 = 0;
  3. x 2 − 6 x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D x 2 − 2 x − 3 = 0;

  • 15 − 2 x − x 2 = 0;
  • x 2 + 12 x + 36 = 0.
  • Первое уравнение:
    x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2) 2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Второе уравнение:
    15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2) 2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    Наконец, третье уравнение:
    x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 12 2 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax 2 + bx + c = 0 называется , если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (− c / a ) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (− c / a ) c / a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

    5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

    Источник статьи: http://www.berdov.com/docs/equation/quadratic_equations/

    Дискриминант квадратного уравнения

    Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

    Вид уравнения Формула корней Формула
    дискриминанта
    ax 2 + bx + c = 0 b 2 — 4ac
    ax 2 + 2kx + c = 0 k 2 — ac
    x 2 + px + q = 0
    p 2 — 4q

    Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

    Вид уравнения Формула
    ax 2 + bx + c = 0 , где D = b 2 — 4ac
    ax 2 + 2kx + c = 0 , где D = k 2 — ac
    x 2 + px + q = 0 , где D =
    , где D = p 2 — 4q

    Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

    1. Если дискриминант больше нуля, то уравнение имеет два корня.
    2. Если дискриминант равен нулю, то уравнение имеет один корень.
    3. Если дискриминант меньше нуля, то уравнение не имеет корней.

    Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

    так как она относится к формуле:

    ,

    которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

    Решение квадратных уравнений через дискриминант

    Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

    Пример 1. Решить уравнение:

    Определим, чему равны коэффициенты:

    D = b 2 — 4ac = (-4) 2 — 4 · 3 · 2 = 16 — 24 = -8,

    Определим, чему равны коэффициенты:

    D = b 2 — 4ac = (-6) 2 — 4 · 1 · 9 = 36 — 36 = 0,

    Уравнение имеет всего один корень:

    Определим, чему равны коэффициенты:

    D = b 2 — 4ac = (-4) 2 — 4 · 1 · (-5) = 16 + 20 = 36,

    Источник статьи: http://izamorfix.ru/matematika/algebra/diskriminant.html


    Adblock
    detector