Меню

Что значит найти корни уравнений и как



Решение простых линейных уравнений

Понятие уравнения

Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Приходите решать увлекательные задачки по математике в детскую школу Skysmart. Поможем разобраться в сложной теме, подтянем оценки и покажем, что математика может быть захватывающим приключением.

Запишите ребенка на бесплатный вводный урок: познакомим с форматом, выявим пробелы и наметим индивидуальную программу обучения.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

  • кубические
  • уравнение четвёртой степени
  • иррациональные и рациональные
  • системы линейных алгебраических уравнений

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

    Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.

А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на общий множитель, то есть 6.

Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.

5х — 3х — 2х = — 12 — 1 + 15 — 2

    Найти неизвестную переменную.

Пример 4. Решить: 4(х + 2) = 6 — 7х.

  1. 4х + 8 = 6 — 7х
  2. 4х + 7х = 6 — 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = — 0, 18

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Пример 7. Решить: 2(х + 3) = 5 — 7х..

  1. 2х + 6 = 5 — 7х
  2. 2х + 6х = 5 — 7
  3. 8х = −2
  4. х = −2 : 8
  5. х = — 0,25

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в современную онлайн-школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. А еще развивающие игры, квесты и головоломки на любой возраст и уровень.

Источник статьи: http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij

Корень уравнения — определение в математике, формулы нахождения

Часто в математических задачах нужно быстро найти корень уравнения. Однако при несоблюдении общих правил решение может быть неверным. Для каждого вида уравнения существуют определенные методы нахождения корня или корней. Важно сначала идентифицировать тип уравнения, а затем его решать.

Общие сведения

Уравнение — это равенство вида F (x1, x2. xn) = G (x1, x2. xn), в котором есть переменные. Определение можно сформулировать следующим образом: уравнением называется равенство, в котором присутствуют неизвестные величины. Решить его — значит найти корни (корень) или доказать, что их нет.

Корень — значение, при подстановке которого равенство принимает истинное значение. Например, корнем уравнения (2х = 4) является 2.

Решением уравнения называется задача по нахождению всех его корней или доказательство их отсутствия. В некоторых случаях условием задачи могут быть наложены ограничения (только целые числа, дробные, комплексные и так далее).

Равносильные функции с неизвестными

В математике существует понятие равносильности или эквивалентности уравнений. Оно означает, что корни заданных равенств совпадают. Кроме того, они считаются эквивалентными, когда не имеют корней. Эквивалентность имеет:

Последний прием используется при решении квадратных, кубических и биквадратных уравнений некоторых типов. Метод позволяет упростить поиск неизвестных величин. Например, x 2 — 2x = 0 является квадратным уравнением с параметром С = 0.

Можно найти его дискриминант и вычислить корни. Но существует более простой способ — использование третьего свойства эквивалентности. Следует просто вынести общий множитель за скобки: х * (х-2) = 0. Уравнение «распадается» на два простых: х = 0 и х — 2 = 0. Решаются они очень просто: х1 = 0 и х2 = 2.

Информация о свойствах

Выражения, входящие в состав уравнения, не должны изменять корни, а также приводить к обнаружению посторонних решений. Допустимые преобразования:

  • раскрытие скобок;
  • приведение подобных слагаемых;
  • перенос любого члена уравнения в другую часть с заменой знака на противоположный;
  • к двум частям можно прибавить или вычесть одно выражение, также допускается деление и умножение частей на одинаковые выражения, неравные 0.

При выполнении некоторых операций, приводящих к потере переменных значений, могут возникнуть посторонние корни. В этом случае придется проверять все значения, подставляя их в исходное выражение. Рекомендуется избегать операций, которые приводят к сокращению неизвестных. Это приводит к неверным решениям и образованию дополнительных корней.

Классификация уравнений

Для решения каждого уравнения есть свои правила и алгоритмы. Различают следующие виды уравнений: алгебраические, с параметрами, трансцендентные, функциональные, дифференциальные и другие.

Некоторые виды позволяют записывать значение корня в виде функции или функции с параметром. Для решения применяются специальные аналитические функции, которые могут предоставить сведения о вычислении корней, а также предварительно определить их количество и зависимость от значения параметра. Однако аналитические решения можно применять только для алгебраического типа (не выше 4 степени).

Для трансцендентных уравнений количество аналитических решений ограничено, поскольку не все тригонометрические функции имеют значения, равные нулю. Если невозможно найти аналитическое решение, то применяются вычислительные методы. Они позволяют сузить интервал, в котором находится корень. Следовательно, такое решение не будет точным.

Алгебраический тип

Уравнение вида P (x1, x2. xn) = 0, в котором многочлен представлен неизвестными аргументами, называется алгебраическим. Оно может содержать одно или несколько неизвестных, иметь степень.

Алгебраические уравнения могут быть нескольких типов: линейными, квадратными, кубическими, биквадратными (4 степень). Кроме того, линейные могут объединяться в системы. Решить систему уравнений — значит найти общие корни всех выражений, которые в нее входят.

Линейные и квадратные

Линейным называется уравнение, степень которого соответствует единице. Его можно записать в двух формах — общей и канонической. В первом случае оно имеет следующий вид: a1 * x1 + a2 * x2 + an * xn + b = 0. В последнем случае нужно перенести число b в правую часть: a1 * x1 + a2 * x2 + an * xn = b. Пример: 3х — 2 = 25.

Более сложным типом считается квадратное уравнение, то есть выражение типа А * х 2 + В * x + С = 0 (А не равно 0). Они бывают полными (А, В, С не равны 0) и неполными (какой-нибудь коэффициент равен 0, кроме А). Его можно решить автоматизированным и ручным методами.

Можно воспользоваться специальным программным обеспечением или интернет-ресурсом, который ищет корни квадратного уравнения. Необходимо вписать в специальные поля значения А, В и С. Программа вычислит все за секунду и выдаст результат. Во втором случае нужно применить формулу. Корни квадратного уравнения вычисляются при нахождении дискриминанта и подстановке значений А и В в выражения. Чтобы найти их, следует действовать по алгоритму:

  • Вычислить дискриминант: D = b 2 — 4 * А * С.
  • При D > 0 имеется два корня: х1 = [(-B) — sqrt (D)] / (2 * A) и х2 = [(-B) + sqrt (D)] / (2 * A).
  • Если D = 0, то корень единственный: х = (-B) / (2 * A).
  • Корней не существует при D Кубические и биквадратные

    Многочлен с неизвестными вида A * х 3 + B * x 2 + C * x + D = 0 называется кубическим уравнением. При этом А не может быть равно 0. Для решения применяется кубическая парабола.

    Равенство можно разделить на А и выполнить замену такого вида: x = y — (b / (3 * A)). Исходное выражение примет такой вид: y 3 + p * y + q = 0. Коэффициенты p и q вычисляются по следующим формулам: q = [2 * B 3 — 9 * A * B * C + 27 * (A 2 ) * D] / (27 * A 3 ) и p = [(3 * A * C — B 2 ) / (3 * A 2 )].

    При решении биквадратных многочленов с неизвестными необходимо рассматривать каждый случай индивидуально. Все они решаются аналитическим способом с помощью замены переменной. Главной задачей является понижение степени.

    С параметрами и трансцендентные

    В дисциплинах с физико-математическим уклоном можно встретить уравнения с параметрами, от которых зависит их вид. Они могут быть линейными и нелинейными. Для их решения надо найти все системы значений параметров, при которых имеются корни.

    Пример — a * x + 1 = 4. Параметр «а» может быть дробью, действительным или натуральным числом, а также состоять из суммы, произведения или разности некоторых переменных. Допустимые значения оговариваются условием задачи. Их называют ограничениями.

    Трансцендентные уравнения содержат показательные, логарифмические, тригонометрические и обратные тригонометрические функции. Они не являются алгебраическими. Пример — cos (x) = x и lg (x) = x — 5. Их корни находятся по различным алгоритмам, которые зависят от общего вида. Допускается при решении использование метода замены переменных для упрощения вида.

    Функциональные и дифференциальные

    Уравнения, которые выражают связь между значениями в нескольких точках, называются функциональными. Этот термин применяется для всех видов, которые невозможно свести к алгебраическому типу. Корнем является функция. Например, корнем выражения F (s) = 2^(s) * ПИ^(s-1) * sin (ПИ * s / 2) * Г (1-s) * f (1-s) является дзета-функция Римана.

    Дифференциальное уравнение содержит какую-либо дифференциальную функцию с неизвестным или неизвестными. Все дифуравнения делятся на два типа: обыкновенные и в частных производных. В первый тип входят функции от одного аргумента, во вторую — функции, зависящие от многих аргументов. Для нахождения корней следует найти функцию, удовлетворяющую условию и имеющую на интервале производные.

    Примеры решения

    На ЕГЭ могут быть различные задания по математике. Среди них могут быть линейные и квадратные уравнения. Например, дано выражение вида: 3 (х-9) + 2х (х-3)= 2 (х-2)(х+2). Нужно найти значение переменной. Алгоритм следующий:

  • Раскрыть скобки: 3х — 27 + 2х 2 — 6x = 2x 2 — 8.
  • Привести подобные слагаемые: -3х = 18.
  • Найти корень: х = — 6.

    Нет смысла находить точки пересечения двух парабол (x 2 — 3x + 2 = 0 и y 2 — 5y + 6 = 0) с осями координат. Для получения быстрого результата достаточно воспользоваться теоремой Виета. Точки пересечения вычисляются следующим образом: x1 = 1, x2 = 2, y1 = 2 и y2 = 3.

    Чтобы найти точки пересечения параболы (3x 2 — 10x + 5 = 0) с осями декартовой системы координат, следует решить квадратное уравнение:

  • Найти дискриминант: D = (-b)^2 — 4AC = 100 — 4 * 3 * 5 = 100 — 60 = 40 > 0.
  • Первый корень: x1 = [-B — sqrt (D)] / (2 * A) = [10 — 2 * sqrt (10)] / (2 * 3) = (5 — sqrt (10)) / 3.
  • Второй: x2 = (5 + sqrt (10)) / 3.

    Парабола пересекает ось ОХ в точках x1 = (5 — sqrt (10)) / 3 и x2 = (5 + sqrt (10)) / 3. Выражения можно не вычислять, поскольку получатся приближенные значения.

    Таким образом, для нахождения корней уравнения необходимо сначала его идентифицировать, привести к упрощенному виду, понизить степень (при необходимости), а затем применить какой-либо из алгоритмов.

    Источник статьи: http://sprint-olympic.ru/uroki/matematika-uroki/92715-koren-yravneniia-opredelenie-v-matematike-formyly-nahojdeniia.html


  • Adblock
    detector