Меню

Что такое жесткость тела в физике и как ее найти



Сила упругости

Получите помощь лучших авторов по вашей теме

Что такое сила упругости

Сила упругости — вид силы, возникающей внутри тела при его упругой деформации, величина которой находится в прямой пропорциональной зависимости от абсолютного значения разницы начальной и конечной длины.

В математических формулах и на схемах она обозначается Fупр и измеряется в международной системе СИ в единицах — Ньютон на метр (Н/м).

Изменение формы тела происходит путем сжатия либо растяжения. Воздействие может быть постепенным и длительным, краткосрочным и резким. Несомненно одно: возникающая в ответ сила (Fупр) стремится вернуть телу первоначальную форму и направлена противоположно первично действующей.

Если деформация является упругой, Fупр тем значительнее, чем больше изменение длины.

Для каждого вещества установлена такая физическая характеристика, как степень жесткости. Именно она определяет, какая сила должна быть приложена к телу, чтобы изменение его формы произошло определенным образом.

Когда возникает и от чего зависит

В принципах объяснения этого явления заложены изменения геометрии межмолекулярных пространств и, соответственно, — сил, удерживающих молекулярные решетки в естественном положении. Другими словами, молекулярная решетка всегда стремится к стабильности. Увеличение либо уменьшение расстояния между молекулами, которые непременно происходят при растяжении либо сжатии, влечет возникновение сопротивления. Его интенсивность прямо пропорциональна величине деформации.

При упругих изменениях формы тела в них появляется потенциальная энергия. Это электромагнитная величина, которую характеризуют как внешнее проявление межмолекулярных сил. Направление вектора этих сил противоположно смещению молекул. Простейшим примером подобной ситуации является растяжение либо сжатие пружины. По мере прекращения воздействия пружина принимает первоначальный вид и в ней исчезает сила упругости.

Такая зависимость нашла свое отражение в законе Гука — постулате, лежащем в основе многих физических процессов.

Результат проявления Fупр — стрельба из лука, весы на пружине, спортивный инвентарь с пружинным механизмом, белье, вывешенное на веревке, матрац пружинной конструкции и др.

Какой закон описывает силу упругости

Для измерения силы, противодействующей элементарной деформации простого тела, применяется формула:

где k — коэффициент пропорциональности, зависящий от жесткости материала, Δl — изменение длины тела при деформации под воздействием внешней силы.

Часто перед правой половиной равенства ставится знак «минус», что означает противоположную направленность внешней силы и силы упругости. В вышеизложенном виде значение определяется по модулю.

Это закон Гука, который был открыт ученым в 1660 году и является основным в теории упругости. Он имеет и теоретическую формулировку.

Закон Гука: та сила, которая действует при деформации тела, находится в прямой пропорциональной зависимости от изменения длины и в момент действия направлена в сторону, противоположную перемещению внутренних частиц.

Идеально выполняется закон Гука при малых деформациях, поскольку интенсивная сила может вызвать разрушение вещества, из которого изготовлено тело.

Существует и сугубо физическая формулировка этого закона. В ней задействовано понятие относительной деформации. Формула выглядит так:

где S — площадь сечения тела, подвергшегося деформации, σ — напряжение.

Из этих математических выражений вытекает следующая форма закона Гука:

где E — модуль Юнга, зависящий только от характеристики материала, но не от формы и размеров тел.

График зависимости силы упругости

Получить наглядное представление о зависимости силы упругости от растяжения пружины можно, построив график. Его внешний вид следующий:

График зависимости силы упругости

Получить наглядное представление о зависимости силы упругости от растяжения пружины можно, построив график. Его внешний вид следующий:

Пояснение: ось ординат — значения силы упругости; ось абсцисс — изменения длины.

Масштаб подбирается соответственно разрядности используемых данных.

Построение происходит по обычным геометрическим алгоритмам:

  • составляются ряды данных;
  • наносятся значения на оси координат, имеющих соответствующее обозначение;
  • соединяются полученные точки.

Для наглядности часто график строят таким образом, что максимальное значение одного из параметров соответствует наивысшей точке на прямой.

График в виде прямой линии справедлив для растяжения пружины до определенного (критического) уровня ее растягивания. Если же действующая сила, после достижение этого уровня, продолжает свое воздействие, деформация перестает быть упругой. Другими словами, на воздействие деформирующей силы тело перестает отвечать своими попытками восстановить прежнюю форму. Кроме того, при очень большой силе оно может полностью либо частично разрушиться. В таком случае график приобретает особенность и выглядит так:

Пояснение в следующем: область I — прямая линия, начинающаяся в начале координат — характеризует зависимость между Fупр и удлинением (укорочением) пружины при малых деформациях. Это — область действия закона Гука. Область II характеризует более значительные деформации, проявлением которых может быть разрыв тела. Такие деформации называются пластическими.

Примеры силы упругости в физике

Силу упругости можно наблюдать не только в физических опытах, но и в быту. Именно она является причиной того, что мокрое белье, повешенное на веревку, не падает на землю. Первоначально, под его тяжестью, веревка провисает, но после возвращается практически в прежнее положение. При последующем увеличении массы провисание появляется вновь.

Благодаря силе упругости биологические ткани животных, растений и человека не разрушаются под воздействием окружающей среды, например, атмосферного давления. Еще большую нагрузку испытывают живые организмы, находящиеся под водой.

Условием того, что с веток не падают птицы, на них держатся плоды, ветки не ломаются под порывами ветра и массивными снежными шапками, также является наличие этой силы.

Источник статьи: http://wiki.fenix.help/fizika/sila-uprugosti

Определение жесткости пружины

Библиотека бесплатных студенческих работ

Жесткость — способность твёрдого тела, конструкции или её элементов сопротивляться деформации от приложенного усилия вдоль выбранного направления в заданной системе координат.

Сила жесткости — сила, возникающая в теле в результате его деформации и стремящаяся вернуть его в исходное состояние.

От чего зависит жесткость

Жесткость пружины зависит от нескольких параметров:

  • геометрии пружины;
  • типа материала;
  • коэффициента;
  • срока эксплуатации.

Геометрия пружины

На жесткость витой пружины влияет:

  • количество витков;
  • их диаметр;
  • диаметр проволоки.

Диаметр намотки измеряется от оси пружины. Так как длина проволоки в пружине значительно больше длины упругого стержня, сопротивляемость внешней деформации многократно возрастает.

Волновые пружины состоят из металлических лент, навитых ребром по окружности заданного диаметра.

Их основные геометрические параметры:

  • количество витков;
  • количество волн на виток;
  • сечение ленты.

Тип материала

У каждого материала есть условный предел упругости, характеризующий его способность восстанавливаться после деформации. Если этот предел превышается, в структуре материала возникают необратимые изменения.

Предел упругости — механическая характеристика материала, показывающая максимальное напряжение, при котором имеют место только упругие, обратимые деформации.

Предел упругости измеряют в паскалях и определяют по формуле:

где F — действие внешней силы на исследуемый образец, приводящее к повреждениям, а S — его площадь.

Кроме предела упругости, существуют такие характеристики упругости материалов, как модули упругости (модуль Юнга) и сдвига, коэффициент жесткости и другие. Все они взаимосвязаны, поэтому, выяснив значение одной из величин с помощью справочной таблицы, можно вычислить другие.

Коэффициент

Согласно закону Гука, при малой деформации абсолютная величина силы упругости прямо пропорциональна величине деформации.

Эта линейная зависимость описывается формулой:

где k — коэффициент жесткости, а х — величина, на которую сжалась или растянулась пружина.

Деформация считается малой в том случае, когда изменение размеров тела значительно меньше его первоначальных размеров.

Срок эксплуатации

Нахождение под напряжением приводит к постепенной необратимой деформации, называемой ослаблением пружины.

Жесткость пружины влияет на срок ее эксплуатации, как и сила воздействия. Конструкторы пружин, предварительно рассчитав эти параметры, проводят тесты на прототипах, прежде чем начать массовое производство. В специальных установках для испытания на усталость материала их сжимают и отпускают определенное количество циклов, отдельно проверяя поведение пружин при максимальной и минимальной нагрузке.

В чем измеряется жесткость

Жесткость пружины в системе СИ измеряется в ньютонах на метр, Н/м. Также встречается единица измерения ньютон на миллиметр, Н/мм. Численно жесткость равна величине силы, изменяющей размер пружины на метр длины.

Как обозначается

Коэффициент жесткости пружины обозначают буквой k.

Коэффициент жесткости пружины

Коэффициент жесткости — коэффициент, связывающий в законе Гука удлинение упругого тела и возникающую вследствие этого удлинения силу жесткости.

Применяется в механике твердого тела в разделе упругости.

Формула расчета через массу и длину

Используя закон Гука, коэффициент жесткости можно вычислить по формуле:

Чтобы выяснить силу тяжести, воздействующую на пружину, нужно воспользоваться формулой:

где m — масса подвешенного на пружине тела, а g — величина свободного ускорения, равная 9,8.

Чтобы найти х, нужно дважды измерить длину пружины и вычислить разницу между этими двумя значениями.

При соединении нескольких пружин общая жесткость системы меняется. Коэффициенты каждой из пружин суммируются при параллельном соединении. При последовательном соединении общая жесткость вычисляется по формуле:

Как можно измерить жесткость

Измерительные приборы

Приборы для испытания пружин на сжатие-растяжение контролируют приложенное усилие с помощью тензометрического датчика, а также изменение их длины, выводя показатели на дисплей. Без специального прибора измерить осевую жесткость можно, используя динамометр и линейку.

Существуют приборы и для измерения поперечной жесткости пружин. Для этого нужно измерить смещение нескольких точек пружины, определив расстояние и угол между ними.

Практическая задача

Самый простой способ измерить жесткость пружины — провести стандартный школьный опыт со штативом и подвешенными на пружине грузиками.

Для измерения осевой жесткости спиральной пружины используют:

  • штатив, на котором закрепляют пружину;
  • крючок, который крепят на свободный ее конец;
  • грузики с известной массой, которые подвешивают на свободный конец пружины;
  • линейку, чтобы измерить длину пружины с грузом и без груза.

Проведя несколько измерений с грузиками разной массы и вычислив силу тяжести, воздействовавшую на пружину в каждом из них, можно построить график зависимости длины пружины от приложенного усилия и узнать среднее значение коэффициента жесткости.

Альтернативные способы определения жесткости

Жесткость пружины можно определить и через период ее колебания, воспользовавшись формулой:

Или через частоту колебаний по формуле:

Проводя опыт с пружиной, закрепленной на штативе, и грузиками с известной массой, можно не измерять длину пружины, а привести ее в колебательное движение и сосчитать количество колебаний в период времени.

Формула расчета через длину, дающая более точные результаты и применимая к пружинам со значительной деформацией, различается для пружин разных геометрических параметров. Например, жесткость витой цилиндрической пружины, упруго деформируемой вдоль оси, вычисляется по формуле:

где (d_D) — диаметр проволоки, (d_F) — диаметр намотки, (G) — модуль сдвига, который зависит от материала, а (n) — число витков.

Рассчитайте коэффициент жесткости пружины, если известно, что ее диаметр 20 мм, диаметр проволоки 1 мм, число витков — 25. Модуль сдвига равен (8times;10^<10>😉 Па.

Переведем числовые значения в систему СИ и подставим в формулу:

Жесткость при деформации кручения существенно отличается от жесткости сжатия-растяжения. Предел прочности при кручении у любого материала будет меньше, чем предел прочности при сжатии-растяжении или изгибе. Торсионная жесткость, также называемая крутильной, в системе СИ измеряется в ньютон-метрах на радиан, сокращенно Н-м/рад. Ее можно определить по формуле:

где (М) — крутящий момент, приложенный к телу, а (alpha) — угол закручивания тела по оси приложения крутящего момента.

Нужно подобрать материалы для студенческой работы?

Источник статьи: http://wiki.fenix.help/fizika/zhestkost-pruzhiny


Adblock
detector