Меню

Что такое величина угла и как ее найти



Что такое величина угла и как ее найти

Угол в измеряют в градусной мере (градус, минута, секунда), в оборотах — отношение длины дуги s к длине окружности L , в радианах — отношение длины дуги s к радиусу r ; исторически применялась также градовая мера измерения углов, в настоящее время она почти нигде не используется.

1 оборот = 2π радианам = 360° = 400 градам.

В системе СИ принято использовать радианы.

В морской терминологии углы обозначаются румбами.

Углы на тригонометрической окружности

В математике в качестве начала отсчёта углов принято направление оси абсцисс (то есть для наблюдателя, расположенного в начале координат, — относительно направления направо), и отсчитывается против часовой стрелки.

В географии в качестве начала отсчёта углов принято направление оси ординат (то есть для наблюдателя, расположенного в начале координат, — относительно направления север (вперёд)), и отсчитывается по часовой стрелке.

Типы углов

Смежные углы — два угла с общей вершиной, одна из сторон которых — общая, а оставшиеся стороны лежат на одной прямой (не совпадая). Сумма смежных углов равна 180°.

Вертикальные углы — два угла, которые образуются при пересечении двух прямых и не имеют общих сторон. Два вертикальных угла равны.

В зависимости от величины углы разделяются на:

Вариации и обобщения

Величиной ориентированного угла между прямыми AB и CD (обозначение: ) называбт величину угла, на который нужно повернуть против часовой стрелки прямую AB так, чтобы она стала параллельна прямой CD . При этом углы, отличающиеся на , считаются равными. Следует отметить, что ориентированный угол между прямыми CD и AB не равен ориентированному углу между прямыми AB и CD (они составляют в сумме или, что по нашему соглашению то же самое, ). Ориентированные углы обладает следующими свойствами: а) ; б) ; в) точки A,B,C,D , не лежащие на одной прямой, принадлежат одной окружности тогда и только тогда, когда .

Ряд практических задач приводит к целесообразности рассматривать угол как фигуру, получающуюся при вращении фиксированного луча вокруг точки О (из которой исходит луч) до заданного положения. В этом случае угол является мерой поворота луча. Такое определение позволяет обобщить понятие угла: в зависимости от направления вращения различают положительные и отрицательные углы, рассматривают углы, большие 360°, углы, равные 0°, и т. д. В тригонометрии такое рассмотрение позволяет изучать тригонометрические функции для любых значений аргумента.

Понятие угла обобщается также на различные объекты, рассматриваемые в стереометрии (двугранный угол, многогранный угол, телесный угол).

Кроме этого, рассматривается угол между гладкими кривыми в точке касания: по определению, его величина равна величине угла между касательными к кривым.

Wikimedia Foundation . 2010 .

Смотреть что такое «Величина угла» в других словарях:

величина, обратная тангенсу угла наклона — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN reciprocal slope … Справочник технического переводчика

ДИСПЕРСИЯ УГЛА ОПТИЧЕСКИХ ОСЕЙ (ДИСПЕРСИЯ ОПТИЧЕСКИХ ОСЕЙ) — разл. величина угла опт. осей в к ле для света разных длин воли. Различают два вида Д. у. о. о.: 1) угол опт. о. для более длинных (красных) волн больше, чем для коротких (фиолетовых); этот вид дисп. обозначается r>V или ρ>V; 2) угол… … Геологическая энциклопедия

радиус закругления угла — 3.17 радиус закругления угла: Величина допускаемого отклонения от формы угла. Источник: ГОСТ Р 52597 2006: Прутки латунные для обработки резанием на автоматах. Технические условия … Словарь-справочник терминов нормативно-технической документации

Определение угла конуса и прямолинейности образующей калибров-пробок и калибров-втулок — 3.6. Определение угла конуса и прямолинейности образующей калибров пробок и калибров втулок Черт. 7 3.6.1. Угол конуса и прямолинейности образующей конусных калибров определяют с помощью специальных приборов моделей БВ 6166, БВ 7312, БВ 7319, БВ… … Словарь-справочник терминов нормативно-технической документации

Трисекция угла — Трисекция угла задача о делении заданного угла на три равные части построением циркулем и линейкой. Иначе говоря, необходимо построить трисектрисы угла лучи, делящие угол на три равные части. Наряду с задачами о квадратуре круга и… … Википедия

Диоптрика — часть общего учения о световых явлениях оптики и говорит о явлениях, сопровождающих переход световых лучей из одной (обычно однородной, или изотропной) среды в другую, отличную от первой. Свет, как предполагают, есть волнообразное распространение … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

испытание — 3.10 испытание: Техническая операция, заключающаяся в определении одной или нескольких характеристик данной продукции, процесса или услуги в соответствии с установленной процедурой. Источник: ГОСТ Р 51000.4 2008: Общие требования к аккредитации… … Словарь-справочник терминов нормативно-технической документации

НОГА — НОГА. Нога как целое и кости как рычаги. Тело человека при стоянии и передвижении опирается на каудальные конечности и своим вертикальным положением резко отличается от положения прочих млекопитающих. В процессе установления двуногой формы… … Большая медицинская энциклопедия

Тригонометрия — (от греч. τρίγονο (треугольник) и греч. μετρειν (измерять), то есть измерение треугольников) раздел математики, в котором изучаются тригонометрические функции и их приложения к геометрии[1]. Данный термин впервые появился в 1595 г. как… … Википедия

Радиан — 1 радиан центральный угол, длина дуги которого равна радиусу окружности. Радиан (русское обозначение: рад, международное: rad; от лат. r … Википедия

Источник статьи: http://dic.academic.ru/dic.nsf/ruwiki/836862

Величина угла и ее измерение

Каждый угол имеет величину. Специального названия для нее в геометрии нет.

Определение. Величиной угла называется положительная величина, определенная для каждого угла так, что: 1) равные углы имеют равные величины; 2) если угол состоит из двух углов, то его величина равна сумме величин его частей.

Эти свойства лежат в основе измерения величины угла. Оно аналогично измерению длины отрезка и состоит в сравнении измеряемой величины угла с величиной угла, принятой за единицу. Единичный угол, а если нужно и его доли, откладываются на угле, величина кото­рого измеряется. В результате получается численное значение величины угла или мера величины угла при данной единице измерения.

Число, которое получается в результате измерения величины угла, должно удовлетворять ряду требований — они аналогичны требованиям, предъявляемым к числовому значению длины отрезка.

На практике за единицу величины угла принимают градус — часть прямого угла. Один градус записывают так: 1°. Величина прямого угла равна 90°, величина развернутого — 180°.

Градус делится на 60 минут, а минута на 60 секунд. Одну минуту обозначают 1′, одну секунду – 1». Так, если мера величины угла равна 5 градусам 3 минутам и 12 секундам, то пишут 5°3’12». Если нужна большая точность в измерении величин углов, используют и доли секунды. Заметим, что часто вместо «величина угла» говорят «угол». Например, вместо «величина угла равна 45 градусам» говорят, что «угол равен 45 градусам».

На практике величины углов измеряют с помощью транспортира. Для более точных измерений пользуются и другими приборами.

Понятие площади фигуры и ее измерение

Каждый человек представляет, что такое площадь комнаты, площадь участка земли, площадь поверхности, которую надо покрасить. Он также понимает, что если земельные участки одинаковы, то площади их равны; что площадь квартиры складывается из площади комнат и площади других ее помещений.

Это обыденное представление о площади используется при ее определении в геометрии, где говорят о площади фигуры. Но геометрические фигуры устроены по-разному, и поэтому, когда говорят о площади, выделяют определенный класс фигур. Например, рассматривают площадь многоугольника, площадь произвольной плоской фигуры, площадь поверхности многогранника и др. В нашем курсе речь будет идти только о площади многоугольника и произвольной плоской фигуры.

Так же, как и при рассмотрении длины отрезка и величины угла, будем использовать понятие «состоять из», определяя его следующим образом: фигура F состоит (составлена) из фигур F1 и F2, если она является их объединением и у них нет общих внутренних точек.

В этой же ситуации можно говорить, что фигура F разбита на фигуры F1 и F2. Например, о фигуре F, изображенной на рисунке 2, а, можно сказать, что она состоит из фигур F1 и F2, поскольку они не имеют общих внутренних точек. Фигуры F1 и F2 на рисунке 2, b имеют общие внутренние точки, поэтому нельзя утверждать, что фигура F состоит из фигур F1 и F2. Если фигура F состоит из фигур F1 и F2, то пишут: F=F1 Å F2.

Определение.Площадью фигуры называется положительная величина, определенная для каждой фигуры так, что: 1) равные фигуры имеют равные площади; 2) если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.

Чтобы измерить площадь фигуры, нужно иметь единицу площади. Как правило, такой единицей является площадь квадрата со стороной, равной единичному отрезку. Условимся площадь единичного квадрата обозначать буквой Е, а число, которое получается в результате изме­рения площади фигуры – S(F). Это число называют численным значе­нием площади фигуры F при выбранной единице площади Е. Оно должно удовлетворять условиям:

1. Число S(F) — положительное.

2. Если фигуры равны, то равны численные значения их площадей.

3. Если фигура F состоит из фигур F1 и F2, то численное значение площади фигуры равно сумме численных значений площадей фигур F1 и F2.

4. При замене единицы площади численное значение площади данной фигуры F увеличивается (уменьшается) во столько же раз, во сколько новая единица меньше (больше) старой.

5. Численное значение площади единичного квадрата принимается равным 1, т.е. S(F) = 1.

6. Если фигура F1 является частью фигуры F2, то численное значе­ние площади фигуры F1 не больше численного значения площади фи­гуры F2, т.е. F1 Ì F2 Þ S (F1) ≤ S (F2) .

В геометрии доказано, что для многоугольников и произвольных плоских фигур такое число всегда существует и единственно для каждой фигуры.

Фигуры, у которых площади равны, называются равновеликими.

Площадь многоугольника

Формулы для вычисления площади прямоугольника, треугольника, параллелограмма были выведены давно. В геометрии их обосновывают, исходя из определения площади, при этом численное значение площади называют площадью, а численное значение длины отрезка — длиной.

Теорема. Площадь прямоугольника равна произведению длин соседних его сторон.

Напомним, что слово «площадь» в этой формулировке означает численное значение площади, а слово «длина» — численное значение длины отрезка.

Доказательство. Если F — данный прямоугольник, а числа a, b — длины его сторон, то S(F) = a ∙ b. Докажем это.

Пусть а и b — натуральные числа. Тогда прямо­угольник F можно разбить на единичные квадраты (рис. 3): F = Е Å Е Å Е Å . Å Е. Всего их а∙b, так как имеем b рядов, в каждом из которых а квадратов. Отсюда S(F) = S(E)+S(E)+…+S(E)= a∙b∙S(E) = a∙b

Пусть теперь a и b — положительные рациональные числа: а = , b = , где m, n, p, q — натуральные числа.

Приведем данные дроби к общему знаменателю: а = , b = . Разобьем сторону единичного квадрата Е на nq равных частей. Если через точки деления провести прямые, параллельные сторонам, то квадрат Е разделится на (пq) 2 более мелких квадратов. Обозначим площадь каждого такого квадрата Е1. Тогда S(Е) = (пq) 2 ∙ S(E1), а по­скольку S(Е)=1, то S(E1) =

Так как а = , b = , то отрезок длиной укладывается на стороне a точно mq раз, а на стороне b — точно пр раз. Поэтому дан­ный прямоугольник F будет состоять из mq ∙ np квадратов Е1. Следо­вательно,

S(F) = mq ∙ np ∙ S(E1) = mq ∙ np ∙ = = = a ∙ b

Таким образом доказано, что если длины сторон прямоугольника выражены положительными рациональными числами а и b, то пло­щадь этого прямоугольника вычисляется по формуле S(Р) = а ∙ b.

Случай, когда длины сторон прямоугольника выражаются поло­жительными действительными числами, мы опускаем.

Из этой теоремы вытекает следствие: площадь прямоугольного треугольника равна половине произведения его катетов.

Теорема. Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.

Доказательство. Пусть АВСD — параллелограмм, не являющийся прямоугольником (рис. 4). Опустим перпендикуляр СЕ из вершины С на прямую АD. Тогда S(АВСЕ) =S(АВСD) + S(СDЕ).

Опустим перпендикуляр ВF из вершины В на прямую АD. Тогда S(АВСЕ) = S(ВСЕF) + S(АВF).

Так как треугольники АВF и СDЕ равны, то равны и их площади.

Отсюда следует, что S(АВСD) = S(ВСЕF), т.е. площадь параллелограмма АВСD равна площади прямоугольника ВСЕF и равна ВС∙ВF, а так как ВС = АD, то S(АВСD) = АD∙ВF.

Из этой теоремы вытекает следствие: площадь треугольника равна половине произведения его стороны на проведенную к ней высоту.

Заметим, что слова «сторона» и «высота» в данных утверждениях обозначают численные значения длин соответствующих отрезков.

Теорема. Площадь правильного многоугольника равна половине произведения его периметра на радиус вписанной окружности.

Если периметр правильного многоугольника обозначить буквой Р, радиус вписанной окружности — r, а площадь правильного многоугольника — S, то, согласно данной теореме, S = Р ∙r.

Доказательство. Разобьем правильный n-угольник на п треугольников, соединяя отрезками вершины n-угольника с центром вписанной окружности (рис.5). Эти

треугольники равны. Площадь каждого из них равна ∙r, где аn — сторона правильного n-угольника. Тогда площадь многоугольника равна ∙r∙n, но an ∙ n = Р. Следовательно, S =

Если F произвольный многоугольник, то его площадь находят, разбивая многоугольник на треугольники (или другие фигуры, для которых известны правила вычисления площади). В связи с этим возникает вопрос: если один и тот же многоугольник по-разному разбить на части и найти их площади, то будут ли получен­ные суммы площадей частей многоугольника одинаковыми? Доказа­но, что условиями, сформулированными в определении площади, площадь всякого многоугольника определена однозначно.

Кроме равенства и равновеликости фигур в геометрии рассматривают отношение равносоставленности. С ним связаны важные свойства фигур.

Многоугольники F1 и F2 называются равносоставленными, если их можно разбить на соответственно равные части.

Например, равносоставлены параллелограмм АВСD и прямоугольник FВСЕ (рис. 4), так как параллелограмм состоит из фигур F1 и F2, а прямоугольник — из фигур F2 и F3, причем F1 = F3.

Нетрудно убедиться в том, что равносоставленные фигуры равно­велики.

Венгерским математиком Ф.Бойяи и немецким любителем мате­матики П.Гервином была доказана теорема: любые два равновеликих многоугольника равносоставлены.Другими словами, если два многоугольника имеют равные площади, то их всегда можно представить состоящими из попарно равных частей.

Теорема Бойяи-Гервина служит теоретической базой для решения задач на перекраивание фигур: одну разрезать на части и сложить из нее другую. Оказывается, что если данные фигуры многоугольные и имеют одинаковые площади, то задача непременно разрешима.

Доказательство теоремы Бойяи-Гервина достаточно сложное. Мы докажем только утверждение о том, что всякий треугольник равносоставлен с некоторым прямоугольником, т.е. всякий треугольник можно перекроить в равно­великий ему прямоугольник.

Пусть дан треугольник АВС (рис. 6). Проведем в нем высоту BD и среднюю линию KL. Построим прямоугольник, одной стороной которо­го является АС, a другая лежит на прямой KL. Так как пары треугольников АРК и КВТ, а также СLМ и ТВL равны, то треугольник АВС и прямоугольник АРМС равносоставлены.

5. Площадь произвольной плоской фигуры и ее измерение

Мы выяснили, что вычисление площади многоугольника сводится по существу к вычислению площадей треугольников, на которые можно разбить этот многоугольник. А как находить площадь произвольной плоской фигуры? И что представляет собой число, выражающее эту площадь?

Пусть F — произвольная плоская фигура. В геометрии считают, что она имеет площадь S(F), если выполняются следующие условия; существуют многоугольные фигуры, которые содержат F (назовем их объемлющими); существуют многоугольные фигуры, которые содержатся в F (назовем их входящими); площади этих многоугольных фигур как угодно мало отличаются от S(F). Поясним эти положения. На рисунке 7 показано, что фигура Q содержит фигуру Р, т.е. Q, — объемлющая фигура, а фигура Р содержится в F, т.е. Р — входящая фигура. На теоретико-множественном языке это означает, что и, следовательно, можно запи­сать, что .

Если разность площадей объемлющей и входящей фигур может стать как угодно малой, то, как установлено в математике, существует единственное число S(F), удовлетворяющее неравенству для любых многоугольных фигур P и Q. Данное число и считают площадью фигуры F.

Этими теоретическими положениями пользуются, например, когда выводят формулу площади круга. Для этого в круг F радиуса r вписы­вают правильный n-угольник Р, а около окружности описывают правильный n-угольник Q. Если обозначить символами S(Q) и S(P) площади этих многоугольников, то будем иметь, что , причем при возрастании числа сторон вписанных и описанных много­угольников площади S(Р) будут увеличиваться, оставаясь при этом меньше площади круга, а площади S(Q) будут уменьшаться, но оставаться больше площади круга.

Площадь правильного n-угольника равна половине произведения его периметра на радиус вписанной в него окружности. При возрастании числа его сторон периметр стремится к длине окружности , а площадь — к площади круга. Поэтому Sкр = = r 2 .

Для приближенного измерения площадей плоских фигур можно использовать различные приборы в частности, палетку.

Палетка — это прозрачная пластина, на которой нанесена сеть квадратов. Сторона квадрата принимается за 1, и чем меньше эта сторона, тем точнее можно измерить площадь фигуры.

Накладываем палетку на данную фигуру F. Квадраты, которые целиком лежат внутри фигуры F, образуют многоугольную фигуру Р; квадраты, имеющие с фигурой F общие точки и целиком лежащие внутри фигуры F, образуют многоугольную фигуру Q (рис. 8). Площади S(Р) и S(Q) находят простым подсчетом квадратов. За приближенное значение площади фигуры F принимается среднее арифметическое найденных площадей:

S(F) = .

В начальном курсе математики учащиеся измеряют площади фигур с помощью палетки таким образом: подсчитывают число квадратов, которые лежат внутри фигуры F, и число квадратов, через которые проходит контур фигуры; затем второе число делят пополам и прибавляют к первому. Полученную сумму считают площадью фигуры F.

Нетрудно обосновать эти действия. Пусть m — число квадратов, которые поместились внутри фигуры F, а n — число квадратов, через которые проходит контур фигуры F. Тогда S(Р) = m, а S(Q) = m + n.

И значит, S(F) = = =

Палетка позволяет измерить площадь фигуры F с определенной точностью. Чтобы получить более точный результат, нужно взять палетку с более мелкими квадратами. Но можно поступить иначе: наложить одну и ту же палетку на фигуру по-разному и найти несколько приближенных значений площади фигуры F. Их среднее арифметическое может быть лучшим приближением к численному значению площади фигуры F.

Источник статьи: http://infopedia.su/9xac33.html


Adblock
detector