Меню

Что такое центр симметрии и как его найти



Осевая и центральная симметрия

Что такое симметрия

Симметрия — это соразмерность, пропорциональность частей чего-либо, расположенных по обе стороны от центра. Говоря проще, если обе части от центра одинаковы, то это симметрия.

Ось симметрии фигуры — это прямая, которая делит фигуру на две симметричные части. Чтобы наглядно понять, что такое ось симметрии, внимательно рассмотрите рисунок.

Центр симметрии — это точка, в которой пересекаются все оси симметрии.

Вернемся к рисунку: на нем мы видим фигуры, у которых есть ось и центр симметрии.

Рассмотрите фигуры с осевой и центральной симметрией.

  • Ось симметрии угла — биссектриса.
  • Ось симметрии треугольника — биссектриса, медиана, высота.
  • Оси симметрии прямоугольника проходят через середины его сторон.
  • У ромба две оси симметрии — прямые, содержащие его диагонали.
  • У квадрата 4 оси симметрии, так как он сразу квадрат, треугольник и ромб.
  • Ось симметрии окружности — любая прямая, проведенная через ее центр.

Витрувианский человек да Винчи — хрестоматийный пример симметрии. Принято считать, что, чем предмет симметричнее, тем он красивее. Хотя, по секрету, в природе нет ничего абсолютно симметричного, так уж задумано. Вся идеальная симметрия — дело рук человека.

Не зря осевую и центральную симметрию изучают в 8 классе — цифра 8 очень симметрична. Если вы хотите, чтобы ваш ребенок чертил и высчитывал не хуже да Винчи, записывайтесь на бесплатный вводный урок математики.

Преподаватели школы Skysmart на интересных примерах из жизни объяснят любую тему, а на нашей интерактивной доске и сам Леонардо не отказался бы почертить.

Осевая симметрия

Вот, как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на прямой.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника с осевой симметрией.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

  1. Строим по уже известному алгоритму. Проводим прямые из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

  1. Измеряем расстояние от точки B до прямой l и от точки A до прямой l.
  2. Проводим прямую от точки А через прямую l, выводя за ось симметрии.
  3. Проводим прямую от точки B через прямую l, выводя за ось симметрии.
  4. Соединяем точки отрезка A1B1.

Центральная симметрия

Теперь поговорим о центральной симметрии — вот ее определение:

Центральной симметрией называется симметрия относительно точки.

Фигуры с центральной симметрией, как и фигуры с осевой симметрией, окружают нас повсюду. Центральную симметрию можно заметить в живой природе, в разрезе фруктов и в цветах на 8 марта.

Давайте разберемся, как построить центральную симметрию и рассмотрим алгоритм построения фигур с центральной симметрией.

Пример 1: Постройте треугольник A1B1C1 ,симметричный треугольнику ABC, относительно центра (точки О).

  1. Соединяем точки ABC c центром и выводим эти прямые на другую сторону оси.
  2. Измеряем отрезки AO, BO, CO и откладываем равные им отрезки с другой стороны от центра (точки О).
  3. Получившиеся точки соединяем отрезками A1B1 A1C1 B1C1.
  4. Получаем треугольник A1B1C1, симметричный треугольнику ABC, относительно центра.

Пример 2. Постройте треугольник A1B1C1, симметричный треугольнику ABC, относительно центра (точки О).

  1. По аналогии с предыдущим примером сначала соединяем точки ABC с точкой O.
  2. Выводим отрезки за точку О.
  3. Измеряем отрезки AO, BO, CO и чертим такие же на противоположной стороне.
  4. Получаем два центрально-симметричных треугольника.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно центра (точки О).

  1. Измеряем расстояние от точки B до точки О и от точки А до точки О.
  2. Проводим прямую из точки А через точку О и выводим ее на другую сторону.
  3. Проводим прямую из точки B через точку О и выводим ее на другую сторону.
  4. Чертим на противоположной стороне отрезки равные отрезкам АО и АB.

Задачи на самопроверку

В 8 классе геометрия — сплошная симметрия: центральная, осевая, зеркальная да какая угодно. Чтобы во всем этом не поплыть, больше тренируйтесь. Чертите и приглядывайтесь, угадывайте вид симметрии и решайте больше задачек. Вот несколько упражнений для тренировки. Мы в вас очень верим!

Задачка 1. Рассмотрите симметричные геометрические рисунки и назовите вид симметрии.

Мы рассмотрели примеры осевой и центральной симметрии и знаем, что:

Симметрия относительно прямой — осевая
Симметрия относительно точки — центральная

Задачка 2. Пусть M и N какие-либо точки, l — ось симметрии. М1 N1 — точки,
симметричные точкам M и N относительно прямой l. Докажите, что MN = М1 N1.

Подсказка: опустите перпендикуляры из точки N и N1 на прямую MМ1

Задачка 2. Постройте фигуру, симметричную данной относительно оси a.

Чтобы у вашего ребенка не возникало больше вопросов, как построить осевую симметрию или чем центральная симметрия отличается от зеркальной, — запишите его на уроки математики в онлайн-школу Skysmart. На наших занятиях даже самые скучные геометрические чертежи превращаются в забавные рисунки.

Источник статьи: http://skysmart.ru/articles/mathematic/osevaya-i-centralnaya-simmetriya

Центральная симметрия — понятие, свойства и примеры фигур

Центральная симметрия – самая интересная и познавательная тема в геометрии, которую изучают в начальных классах школы и более тщательно — в 8 — 11 классах. Знания по этой теме обязательно пригодятся ученику в жизни.

Что такое центральная симметрия

Начнём с определения: центральная симметрия — одно из свойств определённой геометрической фигуры, при котором точке В соответствует некая точка В1, находящая в таком же пространственном положении относительно точки С. Точка С лежит на середине отрезка ВВ1. Точка С называется центром симметрии. Это определение соответствует курсу планиметрии.

Центральную симметрию можно построить и в пространстве. В пространстве центральной симметрией называется словно зеркальное отображение какой-либо геометрической фигуры. Она представляет собой две одинаковые фигуры, соответственные точки которых попарно симметричны относительно точки пространства О.

Свойства центральной симметрии

Основные свойства следующие:

1. Центральную симметрию называют движением, при котором соответствующие точки также остаются симметричными, то есть расстояние между ними остаётся прежним.

Посмотрим на рисунок. Треугольники АВС и А1В1С1 симметричны в пространстве относительно точки О. При каком либо преобразовании пространства сохраняются условия: АО=А1О, ВО=В1О, СО=С1О. Значит, картинка остаётся той же.

Однако если представить геометрическую фигуру в виде векторов, то при преобразовании пространства эти векторы поменяют свои направления;

2. Центральная симметрия имеет только одну центральную точку, которая является неподвижной при преобразовании пространства;

3. Если прямая проходит через центр симметрии, то она соответствует самой себе, то есть симметрична;

4. Центральная симметрия переводит прямую, не проходящую через центр симметрии, в параллельную ей прямую.

Доказывается это свойство достаточно просто. Для этого нужно построить две параллельные прямые АВ и А1В1 относительно точки О.

Далее соединяем симметричные точки и получаем отрезки АА1 и ВВ1. Далее легко заметить, что отрезки АО и А1О будут равны. Соответственно равны и отрезки ВО и В1О. Углы, которые образуются при пересечении двумя прямыми точки О также равны.

Значит, треугольники равны по двум сторонам и углу между ними. Следовательно, равны углы А,А1 и В,В1. Значит они являются накрест лежащими при секущих АА1 и ВВ1. Задача решена, АВ и А1В1 параллельны;

5. При центральной симметрии отрезки симметричны отрезкам, лучи симметричны лучам, прямые симметричны прямым.

Примеры фигур, обладающих центральной симметрией

Фигур, как имеющих углы, так и без углов, но при этом обладающих центральной симметрией не так уж мало:

различные правильные многоугольники.

Интересные факты о центральной симметрии

Вся окружающая нас природа – сплошная центральная симметрия. Многие растения и насекомые обладают центральной симметрией.

Практически у каждого фрукта есть своя симметрия. Например, кокос в разрезе представляет собой окружность с центром в некоторой точке.

Ещё один очевидный пример – бабочка.

Великолепные узоры на её крылышках – четкая и яркая симметрия.

Каждый знает, что видовое разнообразие морских ракушек бесконечно. Наверняка, вы сможете найти несколько как с осевой, так и центральной симметрией.

Великолепные примеры с элементами центральной симметрии можно наблюдать и в архитектуре. Потолки различных храмов и церквей украшаются орнаментами, основой которых является центральная симметрия.

Собор Парижской Богоматери имеет прекрасный, утончённый узор, основанный на центральной симметрии.

Рукодельницы в своих произведениях искусства применяют симметрию, которая заметна в удивительных и затейливых узорах.

Таким образом, центральная симметрия – основа, которая составляет природу, архитектуру и даже иногда музыку. Именно это проявление так радует человеческий глаз при появлении первых снежинок или при знакомстве с сооружениями архитектуры.

Источник статьи: http://nauka.club/matematika/geometriya/tsentralnaya-simmetriya.html


Adblock
detector