Меню

Что такое скорость удаления и как ее найти



Скорость сближения и скорость удаления

Как найти скорость сближения и скорость удаления? Ответ зависит от вида движения.

Чтобы найти скорость сближения, надо сложить скорости объектов:

Чтобы найти скорость удаления, надо сложить скорости объектов:

III. При движении в одном направлении объекты могут как сближаться, так и удаляться.

Если объекты вышли одновременно из одного пункта с разными скоростями, то они удаляются.

Чтобы найти скорость удаления, надо из большей скорости вычесть меньшую:

).]» title=»Rendered by QuickLaTeX.com»/>

Если объекты выходят одновременно из разных пунктов и движутся в одном направлении, то это — движение вдогонку.

Если скорость идущего впереди объекта меньше скорости объекта, следующего за ним, то они сближаются.

Чтобы найти скорость сближения, надо из большей скорости вычесть меньшую:

).]» title=»Rendered by QuickLaTeX.com»/>

Если объект, идущий впереди, движется с большей скоростью, чем идущий следом за ним, то они удаляются:

Чтобы найти скорость удаления, надо из большей скорости вычесть меньшую:

).]» title=»Rendered by QuickLaTeX.com»/>

Если из одного пункта в одном направлении выходит сначала один объект, а спустя некоторое время вслед за ним — другой, то рассуждаем аналогично: если скорость идущего впереди больше, то объекты удаляются, если скорость идущего впереди меньше — сближаются.

При движении навстречу друг другу и движении в противоположных направлениях скорости складываем.

При движении в одном направлении скорости вычитаем.

Источник статьи: http://www.for6cl.uznateshe.ru/skorost-sblizheniya-i-skorost-udaleniya/

Время, скорость, расстояние

Расстояние

Мы постоянно ходим пешком и ездим на транспорте из одной точки в другую. Давайте узнаем, как можно посчитать это пройденное расстояние.

Расстояние — это длина от одного пункта до другого.

  • Например: расстояние от дома до школы 3 км, от Москвы до Петербурга 705 км.

Расстояние обозначается латинской буквой S.

Единицы расстояния чаще всего выражаются в метрах (м), километрах (км).

Формула пути

Чтобы найти расстояние, нужно умножить скорость на время движения:

Скорость

Двигаться со скоростью черепахи — значит медленно, а со скоростью света — значит очень быстро. Сейчас узнаем, как пишется скорость в математике и как ее найти по формуле.

Скорость определяет путь, который преодолеет объект за единицу времени. Скорость обозначается латинской буквой v.

Проще говоря, скоростью называют расстояние, пройденное телом за единицу времени.

Впервые формулу скорости проходят на математике в 5 классе. Сейчас мы ее сформулируем и покажем, как ее использовать.

Формула скорости

Чтобы найти скорость, нужно разделить путь на время:

Показатели скорости чаще всего выражаются в м/сек; км/час.

Скорость сближения — это расстояние, которое прошли два объекта навстречу друг другу за единицу времени. Чтобы найти скорость сближения, нужно сложить скорости объектов.

Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, которые движутся в противоположных направлениях.

Чтобы найти скорость удаления, нужно сложить скорости объектов.

Чтобы найти скорость удаления при движении в одном направлении, нужно из большей скорости вычесть меньшую скорость.

Время

Время — самое дорогое, что у нас есть. Но кроме философии, у времени есть важная роль и в математике.

Время — это продолжительность каких-то действий, событий.

  • Например: от метро до дома — 10 минут, от дома до дачи — 2 часа.

Время движения обозначается латинской буквой t.

Единицами времени могут быть секунды, минуты, часы.

Формула времени

Чтобы найти время, нужно разделить расстояние на скорость:

Эта формула пригодится, если нужно узнать за какое время тело преодолеет то или иное расстояние.

Взаимосвязь скорости, времени, расстояния

Скорость, время и расстояние связаны между собой очень крепко. Одно без другого даже сложно представить.

Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время: s = v × t.

Задачка 1. Мы вышли из дома и направились в гости в соседний двор. Мы дошли до соседнего двора за 15 минут. Фитнес браслет показал, что наша скорость была 50 метров в минуту. Какое расстояние мы прошли?

Если за одну минуту мы прошли 50 метров, то сколько таких пятьдесят метров мы пройдем за 10 минут? Умножив 50 метров на 15, мы определим расстояние от дома до магазина:

Ответ: мы прошли 750 метров.

Если известно время и расстояние, то можно найти скорость: v = s : t.

Задачка 2. Двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние от двора до магазина с мороженым 100 метров. Первый школьник добежал за 25 секунд. Второй за 50 секунд. Кто добежал быстрее?

Быстрее добежал тот, кто за 1 секунду пробежал большее расстояние. Говорят, что у него скорость движения больше. В этой задаче скорость школьников это расстояние, которое они пробегают за 1 секунду.

Чтобы найти скорость, нужно расстояние разделить на время движения. Найдем скорость первого школьника: для этого разделим 100 метров на время движения первого школьника, то есть на 25 секунд:

Если расстояние дано в метрах, а время движения в секундах, то скорость измеряется в метрах в секунду (м/с). Если расстояние дано в километрах, а время движения в часах, скорость измеряется в километрах в час (км/ч).

В нашей задаче расстояние дано в метрах, а время в секундах. Значит будем измерять скорость в метрах в секунду (м/с).

Так мы узнали, что скорость движения первого школьника 4 метра в секунду.

Теперь найдем скорость движения второго школьника. Для этого разделим расстояние на время движения второго школьника, то есть на 50 секунд:

Значит скорость движения второго школьника составляет 2 метра в секунду.

Сейчас можно сравнить скорости движения каждого школьника и узнать, кто добежал быстрее.

Скорость первого школьника больше. Значит он добежал до магазина с мороженым быстрее.

Ответ: первый школьник добежал быстрее.

Если известна скорость и расстояние, то можно найти время: t = s : v.

Задачка 3. От школы до стадиона 500 метров. Мы должны дойти до него пешком. Наша скорость будет 100 метров в минуту. За какое время мы дойдем до стадиона из школы?

Если за одну минуту мы будем проходить 100 метров, то сколько таких минут со ста метрами будет в 500 метрах?

Чтобы ответить на этот вопрос нужно 500 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 100. Тогда мы получим время, за которое мы дойдем до стадиона:

Ответ: от школы до стадиона мы дойдем за 5 минут.

Специально для уроков математики можно распечатать или нарисовать самостоятельно такую таблицу, чтобы быстрее запомнить и применять формулы скорости, времени, расстояния.

Еще больше практики — в детской онлайн-школе Skysmart. Ученики решают примеры на интерактивной платформе: в игровом формате и с мгновенной автоматической проверкой. А еще отслеживают прогресс в личном кабинете и вдохновляются на новые свершения.

Запишите ребенка на бесплатный вводный урок математики: покажем, как все устроено и наметим индивидуальную программу, чтобы ребенок лучше учился в школе и не боялся контрольных.

Источник статьи: http://skysmart.ru/articles/mathematic/vremya-skorost-rasstoyanie

Скорость сближения и скорость удаления

Презентация к уроку

  • познакомить с понятиями “скорость сближения”” и “скорость удаления” умения проверять правильность вычислений;
  • закрепить умение читать и строить модели движения;
  • развивать и закрепить умение решать задачи на движение, умение составлять обратные задачи;
  • закрепить вычислительные навыки сложения, вычитания, умножения и деления чисел, а также навыки вычислительных действий с дробями;
  • развитие творческих способностей, памяти, умения мыслить логически грамотно;
  • развитие математической грамотной речи;

Воспитательные: воспитание интереса к математике;

– Здравствуйте, ребята, садитесь! Проверьте, все ли у вас готово к уроку.
– Вспомним правила посадки.
– Запишите число.

Цель урока (Постановка учебной задачи).

– Вспомните, пожалуйста, сколько объектов может одновременно двигаться по числовому лучу? Откуда могут начинать свое движение объекты? В каких направлениях могут двигаться объекты? С какой скоростью могут двигаться объекты?
– Сегодня мы выясним, что такое “скорость сближения”, “скорость удаления”, что нужно знать, чтобы определить, какая это скорость, как найти скорость сближения или удаления.
– Запишем тему урока “Скорость сближения и скорость удаления”.

  1. Уменьшаемое 130, вычитаемое 111. Найдите разность.
  2. Делимое 480, делитель 40. Найдите частное.
  3. На сколько 200 >, чем 184?
  4. Чему равны 2/3 от числа 27?
  5. Во сколько раз 320 больше, чем 20?
  6. Какое число увеличили в 3 раза и получили 57?
  7. Сумму 95 и 105 разделить на 10.
  8. 2/5 числа составляют 12. Найдите целое число.

Выполняются на доске 2-мя учащимися во время математического диктанта.

Изобразите движение точек на координатном луче и запишите формулу движения точек:

  1. Движение точки А начинается из точки с координатой (6) в правом направлении со скоростью 3 единичных отрезка в час. Движение точки Б начинается из точки с координатой (14) в левом направлении со скоростью 1 единичный отрезок в час. Чему равны координаты этих точек через 1 час, 2 часа?
  2. Движение точки А начинается из точки с координатой (6) в левом направлении со скоростью 3 единичных отрезка в час. Движение точки Б начинается из точки с координатой (14) в правом направлении со скоростью 1 единичный отрезок в час. Чему равны координаты этих точек через 1 час, 2 часа?

Проверка математического диктанта и индивидуальных заданий.

Проверка математического диктанта.

– В ответах математического диктанта зашифровано слово. Чтобы расшифровать его, нам поможет алфавит русского языка.
– Каждый ответ соответствует порядковому номеру буквы в алфавите. Выпишите буквы в строчку.

Переход на Слайд 2 “Математический диктант”.

– Что у вас получилось? Проверяем.

По каждому клику на Слайде 2 заполняется один столбец таблицы.

– У кого получилось слово “скорость”, ставит себе 5.
– На какие 2 группы можно разделить числа математического диктанта?

  1. на четные / нечетные
  2. на круглые / некруглые;

– Что такое “скорость движения”?

S V t Формула
I 315 км 45 км/ч 7 ч S=V*t
II 180 м 36 м/мин 5 мин V=S:t
III 960 м 16 м/с 6 с t=S:V
IV 60 км 60 км/ч 60 мин S=V*t

– Как найти расстояние, зная скорость и время объекта?
– Как найти скорость, зная расстояние и время объекта?
– Как найти время, зная расстояние и скорость объекта?

– Сравните 2 чертежа. Что заметили? В чем отличие? Одинаковы ли виды скоростей?
– Как вы думаете, на каком чертеже будет идти речь о скорости сближения, а где – о скорости удаления?

Объяснение понятий “скорость сближения” и “скорость удаления”.

Работа с упражнением 1 урока 24 (Слайды 3–6). По ходу объяснения ученикам задаются вопросы о том, что они видят на экране и после их ответов ученик заполняет таблицу на доске, остальные — в учебниках, затем учитель переходит к следующему шагу анимации.

Переход на Слайд 3 “1) Встречное движение”.

– Посмотрите на экран.
– Что вы можете сказать о движении Мальвины и Буратино?
– Какое это движение?
– Из каких точек началось их движение? Заполним таблицу.
– В какой точке оказались Мальвина и Буратино через 1 минуту, через 2 минуты, через 3 минуты? Заполним таблицу.
– Что происходит с расстоянием между объектами?
– На сколько уменьшается расстояние между ними через каждую минуту?
– В какой точке и через сколько минут произошла встреча?
– Сделаем вывод.

Переход на Слайд 4 “2) Движение в противоположных направлениях”.

– Посмотрите на экран.
– Что вы можете сказать о движении Синьора Помидора и Чиполлино?
– Какое это движение? Заполним таблицу.
– Из каких точек началось их движение? Заполним таблицу.
– В какой точке оказались Синьор Помидор и Чиполлино через 1 минуту, через 2 минуты, через 3 минуты? Заполним таблицу.
– Что происходит с расстоянием между объектами?
– На сколько увеличивается расстояние между ними через каждую минуту?
– Произойдет ли встреча?
– Сделаем вывод.

Переход на Слайд 5 “3) Движение вдогонку”.

– Посмотрите на экран.
– Что вы можете сказать о движении Крокодила Гены и Чебурашки?
– Какое это движение?
– Из каких точек началось их движение? Заполним таблицу.
– В какой точке оказались Крокодил Гена и Чебурашка через 1 минуту, через 2 минуты, через 3 минуты? Заполним таблицу.
– Что происходит с расстоянием между объектами? Почему?
– На сколько уменьшается расстояние между ними через каждую минуту?
– В какой точке и через сколько минут произошла встреча?
– Сделаем вывод.

Переход на Слайд 6 “4) Движение с отставанием””.

– Посмотрите на экран
– Что вы можете сказать о движении Пончика и Незнайки?
– Какое это движение?
– Из каких точек началось их движение?
– В какой точке оказались Пончик и Незнайка через 1 минуту, через 2 минуты, через 3 минуты? Заполним таблицу.
– Что происходит с расстоянием между объектами? Почему?
– На сколько увеличивается расстояние между ними через каждую минуту?
– Произойдет ли встреча?
– Сделаем вывод.
– Что такое “скорость сближения”? (Это расстояние, на которое сближаются объекты за единицу времени.)
– Что такое “скорость удаления”? (Это расстояние, на которое удаляются объекты за единицу времени.)

Составление опорной схемы.

Переход на Слайд 7 “Опорная схема”.
– Составим опорные схемы ко всем видам движения.

Мы к лесной лужайке вышли,
Поднимая ноги выше,
Через кустики и кочки,
Через ветви и пенечки.
Кто высоко так шагал –
Не споткнулся, не упал.

Решение задач с комментированием.

Для закрепления знаний учащимися разбираются и решаются задачи на все виды движения.
– Решим несколько задач и определим, о какой скорости: сближения или удаления идет речь? Чему она равна? А помогут нам в этом герои сказки “Золотой ключик”.

Работа со Слайдами 8–11. Ученики определяют по Слайду, к какой опорной схеме относится задача, и предлагают способ ее решения.

  1. Разбойники гонятся за Буратино, который убегает от них со скоростью 19 ед./мин. Как изменяется расстояние между Буратино и разбойниками, если они бегут со скоростью 23 ед./мин.
  2. Составьте обратную задачу к 1-ой задаче.
  3. Измените условие 2-ой задачи так, чтобы она решалась “-”.
  4. Измените условие 4-ой задачи так, чтобы она решалась “+”.

Самостоятельное решение задач (тест).

Для проверки знаний и умений по данной теме учащиеся получили тестовые карточки с заданием “Установите соответствие между схемой задачи и ее решением (1 и 2 варианты)”.
– Рассмотрите схемы задач, определите, о какой скорости движения идет речь (сближения или удаления), соедините с подходящим выражением и вычислите его.

Взаимопроверка решений задач.

Учащиеся проверяют выполнение задания с помощью Слайдов 12–13.

– Подошёл к концу наш урок. О чем сегодня узнали на уроке? Что важно знать, чтобы определить скорость сближения или удаления? Что вам особенно понравилось, запомнилось?

Выставление отметок и поощрение учеников.

В течение всего урока работа и ответы учеников оценивались словесно и поощрительными медальками.

Список использованных источников и литературы.

Источник статьи: http://urok.1sept.ru/articles/593012


Adblock
detector