Меню

Что такое сила тяги и как ее найти



Как найти силу тяги

Получите помощь лучших авторов по вашей теме

Что такое сила тяги

Сила тяги — сила, прикладываемая к телу для поддержания его в постоянном движении.

Действие силы тяги

Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.

Её прекращение

Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.

1 закон Ньютона о действии

Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.

В современной физике в формулировку внесены уточнения:

  • закон применим только в системах отсчета, называемых инерциальными;
  • тело может вращаться на месте, не находясь под воздействием внешних сил, поэтому вместо термина «тело» следует использовать термин «материальная точка».

Чтобы переместить неподвижный предмет, на него должна воздействовать некая сила. Чтобы изменить скорость движения предмета, также необходимо воздействие силы, замедляющей его или ускоряющей. Так как предметы обладают разной массой и соответственно разной инертностью, силы, достаточные для эффективного воздействия, тоже будут различаться.

Состояние ускорения после воздействия силы тяги

Когда движение равномерное, сила тяги и сила трения совершают одинаковую работу, уравновешивая друг друга. Воздействие силы на тело в направлении движения придает ему ускорение. Если направить ту же силу в противоположном направлении, она замедлит движение тела, что можно назвать отрицательным ускорением.

Формулы для определения силы тяги

Согласно второму закону Ньютона, сумма сил, воздействующих на движущееся тело, равна массе (m) , умноженной на ускорение (a) . Универсальной формулы, подходящей для любого сочетания сил, не существует. Чаще всего силу тяги находят с помощью общей формулы ( F_т-;F_<с>=m;times;a) , где (F_т) — сила тяги, (F_<с>) — силы сопротивления.
При решении конкретной задачи силы, воздействующие на тело, схематически изображают в виде векторов. На схеме:

  • сила тяжести mg;
  • сила реакции опоры (N) ;
  • сила трения ( F_<тр>) ;
  • сила тяги (F) .

При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: (F_т-;F_с-;mg;times;sinalpha=m;times;a.)

Работа A, которую должна совершить сила тяги, сдвигая тело, связана с ней соотношением (A;=;F;times;s) . (s) здесь — расстояние, на которое тело переместилось.

Какое условие должно соблюдаться

Сила тяги всегда должна быть больше противодействующих ей сил.

Формула через мощность

Полезную механическую мощность (N) можно вычислить по формуле (N=F_т;times;v) , где (v) — скорость. Для определения силы тяги нужно разделить мощность на скорость: (F_т;=;frac N v.)

Измерение и обозначение силы тяги

Силу тяги обозначают (F_т) или (F) . Единица измерения — ньютон ( (Н) ).
Для решения задач недостаточно измерить усилие, приложенное к объекту, и выразить его конкретным числом, так как сила обладает еще и направлением. Чтобы подчеркнуть, что сила — векторная величина, к буквенному обозначению добавляют стрелку.

Как определить силу тяги двигателя. Примеры решения задач

Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.

Переведем киловатты в ватты, а километры в час — в метры в секунду:

(F_т;=;frac N v = frac<96000> <60>= 1600 Н)

Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.

Переведем тонны в килограммы, а килоньютоны в ньютоны:

(F_т-;F_<тр>=m;times;a) , следовательно, (F_т=mtimes a;+;F_<тр>)

Чтобы определить ускорение а, воспользуемся формулой (s;=;frac2)

Подставив численные значения величин, получаем:

Транспорт, весящий 4 тонны, едет в гору. Уклон — 1 метр на каждые 25 метров пути. (mu) — 0,1 от силы тяжести, (а = 0) . Определите силу тяги.

Сделаем проекции на координатные оси:

Подставим значение (F_<тр>) в уравнение (OX) и определим (F_т) :

Найдем синус и косинус (alpha) , подставим их в общую формулу:

Консультации по выполнению всех типов работ

Источник статьи: http://wiki.fenix.help/fizika/sila-tyagi

Формула силы тяги

В том случае, если тело при перемещении имеет ускорение, то на него кроме всех прочих обязательно действует некоторая сила, которая является силой тяги в рассматриваемый момент времени. В действительности, если тело движется прямолинейно и с постоянной скоростью, то сила тяги также действует, так как тело должно преодолевать силы сопротивления. Обычно силу тяги находят, рассматривая силы, действующие на тело, находя равнодействующую и применяя второй закон Ньютона. Жестко определенной формулы для силы тяги не существует.

Не следует считать, что сила тяги, например, транспортного средства действует со стороны двигателя, так как внутренние силы не могут менять скорость системы как единого целого, что входило бы в противоречие с законом сохранения импульса. Однако следует отметить, что для получения у силы трения покоя необходимого направления, мотор вращает колеса, колеса «цепляются за дорогу» и порождается сила тяги. Теоретически было бы возможно не использовать понятие «сила тяги», а говорить о силе трения покоя или силе реакции воздуха. Но удобнее внешние силы, которые действуют на транспорт делить на две части, при этом одни силы называть силами тяги $(/bar_T)$, а другие — силами сопротивления $bar_S$ . Это делается для того, чтобы уравнения движения не потеряли свой универсальный вид и полезная механическая мощность (P) имела простое выражение:

Определение и формула силы тяги

Исходя из формулы (1) силу тяги можно определить через полезную мощность, и скорость транспортного средства (v):

Для автомобиля, поднимающегося в горку, которая имеет уклон , масса автомобиля m сила тяги (FT) войдет в уравнение:

где a – ускорение, с которым движется автомобиль.

Единицы измерения силы тяги

Основной единицей измерения силы в системе СИ является: [FT]=Н

Примеры решения задач

Задание. На автомобиль имеющий массу 1 т при его движении по горизонтальной поверхности, действует сила трения, которая равна $mu$=0,1 от силы тяжести. Какой будет сила тяги, если автомобиль движется с ускорением 2 м/с?

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем второй закон Ньютона:

Спроектируем уравнение (1.1) на оси X и Y:

Подставим правую часть выражения (1.4) вместо силы трения в (1.2), получим:

Переведем массу в систему СИ m=1т=10 3 кг, проведем вычисления:

Ответ. FT=2,98 кН

Формула силы тяги не по зубам? Тебе ответит эксперт через 10 минут!

Задание. На гладкой горизонтальной поверхности лежит доска массой M. На доске находится тело массы m. Коэффициент трения тела о доску равен $mu$ . К доске приложена сила горизонтальная сила тяги, которая зависит от времени как: F=At (где A=const). В какой момент времени доска начнет выскальзывать из-под тела?

Решение. Сделаем рисунок.

Для решения задачи нам потребуются проекции сил на осиX и Y, которые отличны от нуля. Для тела массы m:

$$ begin X: m a_<1>=F_(2.1) \ Y: m g=N(2.2) \ F_=mu N=mu m g rightarrow m a_<1>=mu m g rightarrow a_<1>=mu g(2.3) end $$

$$M a_<2>=F-F_ rightarrow M a_<2>=A t-F_ rightarrow a_<2>=frac>(2.2)$$

Обозначим момент времени, в который доска начнет выскальзывать из-под тела t0, тогда

Ответ. $t_<0>=frac mu g$

Источник статьи: http://www.webmath.ru/poleznoe/formules_21_31_sila_tjagi.php

Сила тяги

Понятие сила тяги

Понятие «сила тяги» часто встречается в задачах по физике, когда речь идеи о механической мощности или движении транспорта. Вообще говоря, это гипотетическая сила, которая вводится для удобства при решении задач.

Поясним эту мысль. Рассмотрим движение автобуса. Сила тяги (обозначим ее как $>_t$) в этом случае является силой трения покоя, которая действует на нижние точки колес со стороны поверхности шоссе. Для реализации движения автобуса по дороге колеса транспортного средства вращает двигатель так, чтобы сила трения была направлена в сторону перемещения (рис.1). В этом случае силу тяги определим как силу трения, которая возникает между ведущими колесами и поверхностью, по которой колеса катятся. Если сила трения отсутствует (колесо находится на льду), то автобус не двигается с места, так как колеса проскальзывают. Трение, которое появляется между колесами и поверхностью дороги создает поступательное перемещение.

Так как сила тяги зависит от силы трения, то для увеличения величины $F_t $ следует увеличить трение. Трение увеличивается при росте коэффициента трения и (или) с увеличением силы нормального давления, которое зависит от массы тела.

Возникает вопрос о необходимости введения некоей силы тяги вместо того, чтобы использовать привычную силу трения. При выделении из внешних сил, которые действуют на наш автобус силы тяги и силы сопротивления движению уравнения движения имеют универсальный вид, и, используя силу тяги, просто выражается полезная механическая мощность ($N$):

где $overline$ — скорость движения тела (у нас автобуса).

Отметим, что у силы тяги нет четко определенной формулы, как, например, у гравитационной силы или силы Архимеда и других сил. Ее часто вычисляют, используя второй закон Ньютона и рассматривая все силы, которые действуют на тело.

Реактивная сила тяги

Уравнения движения тел переменной массы и формулу для вычисления реактивной силы получил первым И.В. Мещерский в 1897 г. Формула реактивной силы является основой для расчета силы тяги ракетных и турборакетных двигателей всех систем.

Пусть ракета перемещается со скоростью $overline$ относительно Земли. Вместе с ней с такой же скоростью движется часть топлива, которая сгорает в ближайшую секунду. При сгорании продукты горения этой части топлива получают дополнительную скорость $overline$ относительно ракеты. Относительно Земли они имеют скорость $overline-overline$. При этом сама ракета увеличивает скорость. После выброса продукты горения не взаимодействуют с ракетой. Поэтому систему ракета плюс продукты горения топлива рассматривают как систему из двух тел, которые взаимодействуют при горении по законам неупругого удара. Пусть реактивный двигатель ракеты каждую секунду выбрасывает массу $mu $ продуктов горения топлива. Используя закон сохранения импульса и второй закон Ньютона получают, что модуль реактивной силы тяги двигателя ($R$) ракеты равен:

Формула (2) показывает, что реактивная сила, которая действует на тело переменной массы, пропорциональна массе отделяющихся частиц за единицу времени и скорости движения этих частиц относительно тела.

Примеры задач с решением

Задание. Сила тяги, действующая на тело, находящееся на наклонной плоскости (рис.2) направлена вдоль этой плоскости вверх (рис.2). Какова ее величина, если масса тела равна $m$, угол наклона плоскости $alpha , $ускорение движения тела $a$? Коэффициент трения тела о плоскость равен $mu $. Тело движется с постоянной скоростью в гору.

Решение. Запишем второй закон Ньютона для сил, действующих на тело, учтем, что тело движется равномерно:

[moverline+overline+overline+>_

=0left(1.1right).]

Запишем проекции уравнения (1.1) на оси X и Y:

[left< begin X: -mgF-F_

=0left(1.2right);; \ Y: N-mg end right.]

Сила трения связана с силой нормального давления как:

Выразим из (1.3) $N$, используем выражение (1.4), получим из (1.2) силу тяги:

Задание. Ракету, массой (в начальный момент времени) равной $M,$ запустили вертикально вверх. Относительная скорость выброса продуктов горения равна $u$, расход горючего составляет $mu $. Каким будет ускорение ракеты через время $t$ после старта, если сопротивление воздуха не учитывать, поле силы тяжести считать однородным.

Решение. Сделаем рисунок.

На ракету (из условий задачи) будут действовать две силы: сила тяжести и реактивная сила тяги. Запишем уравнение движения ракеты:

В проекции на ось Y уравнение (2.1) запишем как:

Реактивная сила тяги может быть найдена как:

Учитывая равенство (2.3) уравнение преобразуем к виду:

Источник статьи: http://www.webmath.ru/poleznoe/fizika/fizika_11_sila_tjagi.php


Adblock
detector