Меню

Что такое сечение колонн как найти



Площадь сечения колонны

Колонна — это сооружение, имеющее вид высокого цилиндра и чаще всего служащее опорой фронтонов или внутренних частей зданий.

Сечение колонны — это изображение фигуры, образованной рассечением колонны плоскостью в поперечном или продольном направлении.

Формула для расчета площади поперечного сечения колонны:

Формула для расчета площади продольного (осевого) сечения колонны:

d — диаметр колонны;
h — высота колонны.

Смотрите также статью о всех геометрических фигурах (линейных 1D, плоских 2D и объемных 3D).

Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор расчета площади поперечного или продольного сечения колонны, если известны диаметр колонны и высота колонны. С помощью этого калькулятора вы в один клик сможете рассчитать площадь сечения колонны (площадь осевого сечения колонны, площадь поперечного колонны, площадь продольного сечения колонны и площади основания колонны).

Источник статьи: http://www.center-pss.ru/math/secheniay/sechenie-kolonni.htm

Типы поперечного сечения колонн

Колонны каркасного сооружения передают вертикальные усилия на фундамент. Они работают в основном от вертикальных нагрузок. Различают сжатые колонны и подвески. В сжатых колоннах — осевое сжатие и внецентренное приложение вертикальной нагрузки, вызывающее дополнительный изгиб. Случайные защемления незначительной жесткости и небольшие эксцентрицитеты обычно вызывают лишь несущественные дополнительные напряжения, которые при проектировании стальных каркасов не учитываются.

Центрально-сжатые колонны рассчитываются на продольный изгиб. Поскольку они могут терять устойчивость в двух направлениях, то расчетным является направление с меньшей жесткостью. Поэтому для колонн более выгодны поперечные сечения, моменты инерции которых одинаковы в отношении обеих осей. Профили, имеющие существенное отличие в моментах инерции, могут быть использованы для колонн только тогда, когда их устойчивость в плоскости меньшего момента инерции обеспечена защемлением в уровне перекрытия или дополнительными закреплениями по высоте.

Стальные колонны проектируют с различными формами поперечных сечений. Благодаря наличию широкого сортамента профилей и возможности применения сталей различной прочности можно подобрать сечение, обеспечивающее необходимую несущую способность колонны. Стальные колонны могут быть сквозного сечения. Такой тип сечения широко применяется в промышленном строительстве благодаря удобству примыкания элементов или в легких колоннах, чтобы повысить их жесткость в нужном направлении путем раздвижки ветвей.

Подвески, которые работают на растяжение, на устойчивость не рассчитываются.

Стальные колонны экономичны по площади сечения, особенно полые колонны, обладающие жесткостью при продольном изгибе. Наименьшие размеры сечения имеют сплошные профили.

1. Для сравнения показаны наружные размеры сечений железобетонных и стальных колонн при расчетной длине 3,5 м под нагрузку 100 и 1000 тс. Стальные колонны имеют коробчатое или сплошное поперечное сечение. В наружных размерах стальных колонн учтена огнезащитная облицовка толщиной 25 мм.

Нагрузки на колонны и одновременно соответствующие поперечные сечения колонн увеличиваются по этажам здания в направлении сверху вниз. Часто бывает желательно иметь одинаковые наружные размеры сечений колонн во всех этажах, при этом применение стандартных ограждающих элементов и облицовки колонн, установка перегородок и примыкание потолков облегчаются. При применении коробчатых и трубчатых профилей это достигается путем изменения толщин стенок и использования нескольких марок стали. Применение профилей сплошного сечения для колонн самых нижних этажей дает возможность иметь наименьшие наружные размеры.

Изменение поперечного сечения колонн

В колоннах из часто употребляемых двутавровых РВ-профилей возможно изменение площади сечения путем применения легкого, нормального и усиленного рядов профилей, а также стали марок St37 и St52. Так как профили усиленного ряда имеют большие наружные размеры, чем те же номера нормального ряда, часто бывает целесообразно комбинировать усиленный ряд соседнего нижнего профиля с легкими и нормальными рядами ближайшего более высокого. В самых нижних этажах колонны могут быть усилены практически без увеличения наружного размера профиля путем приварки к ним листов широкополосной стали.

2. Пример изменения поперечных сечений колонн по высоте здания.

Двутавровые профили

Самая распространенная форма сечения колонн. Она особенно удобна при необходимости крепления к колоннам балок в обоих направления, так как все элементы двутавра доступны для постановки болтов

  • 1. IPE — профиль для небольших нагрузок
  • 2. IPB — профиль с широкими полками, наиболее хорошо подходит для колонн.

3. Прокатные двутавры, усиленные приваренными к полкам стальными полосами.

4. Сварные двутавры из широкополосной стали для колонн при очень больших нагрузках. Такой профиль при большой толщине листов (до 100 мм) может воспринять практически все возможные нагрузки.

Прямоугольные коробчатые профили

Применяются для колонн при больших продольных усилиях и изгибе в обоих направлениях или при большой свободной длине колонны, имеющей ограниченное поперечное сечение. Благодаря ровным наружным плоскостям применяются для необлицованных колонн.

5. Коробчатый профиль, получаемый из IPB путем приварки полос по бокам.

6. Сварной прямоугольный полый профиль. По высоте колонны возможно изменять площадь поперечного сечения путем перемены толщины листов. Минимальная толщина листа 8 мм. Сварка листов может производиться различными способами.

7. Сплошной квадратный профиль, позволяющий делать колонны с наименьшими габаритами сечения, обладает высокой степенью огнестойкости при ограниченной защите и позволяет размещать колонны в перегородках, чем достигается оптимальное использование площади этажа; стоимость обработки незначительна.

8. Два сваренных вместе швеллера. Профиль пригоден лишь в отдельных случаях, так как площадь поперечного сечения можно изменить только приваркой полос внутри.

Крестообразные профили

9. Профиль, образованный из четырех уголков. Благодаря полной симметрии и своеобразной форме поперечного сечения часто применяется из эстетических соображений. Особенно пригоден для колонн, которые размещены на пересечении перегородок и должны быть скрыты в них.

10. Профили по типу рис. 9, но усиленные приваренными между уголками стальными полосами.

11. Профили для тяжелых колонн из двух IРВ или из листовой стали. Такие сечения особенно подходят для колонн при наличии в них изгибающих моментов в обоих направлениях.

Полые прокатные профили

Прямоугольные 12 или квадратные 13 трубы с округленными ребрами имеют очень хороший вид. Использование их для колонн требует принятия особых мер. Площади поперечных сечений профилей, имеющих постоянные наружные размеры, изменяются путем увеличения толщины стенок.

14. Профили круглого полого сечения выгодны с расчетной точки зрения, так как они во всех направлениях имеют одинаковые моменты инерции.

15. Трубы одинакового наружного диаметра могут воспринимать различные по значению усилия благодаря изменению толщины стенки. Использование тонкостенных труб требует принятия особых мер. Цена труб почти в 3 раза выше по сравнению с прокатными двутавровыми профилями. Поэтому, несмотря на незначительную стоимость изготовления трубчатых колонн, они в большинстве случаев оказываются дороже, чем колонны из коробчатых профилей (рис. 6).

Сквозные сечения

Эти типы сечений часто применяются в промышленных сооружениях. Они пригодны и для колонн высотных зданий, если прогоны должны проходить между ветвями колонн или внутри колонн предусмотрена прокладка технического оборудования. Эти колонны имеют габариты поперечного сечения, большие, чем колонны 5 и 6 Отдельные ветви колонн соединены друг с другом с помощью приваренных к ним планок, установленных с определенным шагом, обеспечивающим необходимую жесткость колонны при работе на продольный изгиб.
16. Колонны из двух швеллеров. 17. Тяжелые колонны из двух двутавровых РВ-профилей. 18 Легкие колонны из четырех уголков. Сортамент уголков позволяет изменять площадь сечения колонн в широком диапазоне.

Подвески

Подвески работают только на растяжение, поэтому они могут не иметь развитого сечения, необходимого для сжатых стержней.

19. Круглая сталь, передача усилий через резьбу, наращивание с помощью резьбовой муфты. 20. Листовая сталь. 21. Два швеллера. 22. Закрытый канат из высокопрочной проволоки, передача усилий через напрессованные гильзы.

Источник статьи: http://www.arhplan.ru/components/column/types-of-cross-section-columns

buildingbook.ru

Информационный блог о строительстве зданий

Расчет стальной колонны

Колонна — это вертикальный элемент несущей конструкции здания, которая передает нагрузки от вышерасположенных конструкций на фундамент.

При расчете стальных колонн необходимо руководствоваться СП 16.13330 «Стальные конструкции».

Для стальной колонны обычно используют двутавр, трубу, квадратный профиль, составное сечение из швеллеров, уголков, листов.

Для центрально-сжатых колонн оптимально использовать трубу или квадратный профиль — они экономны по массе металла и имеют красивый эстетический вид, однако внутренние полости нельзя окрасить, поэтому данный профиль должен быть герметично.

Широко распространено применение широкополочного двутавра для колонн — при защемлении колонны в одной плоскости данный вид профиля оптимален.

Большое значение влияет способ закрепления колонны в фундаменте. Колонна может иметь шарнирное крепление, жесткое в одной плоскости и шарнирное в другой или жесткое в 2-х плоскостях. Выбор крепления зависит от конструктива здания и имеет больше значение при расчете т.к. от способа крепления зависит расчетная длина колонны.

Также необходимо учитывать способ крепления прогонов, стеновых панелей, балки или фермы на колонну, если нагрузка передается сбоку колонны, то необходимо учитывать эксцентриситет.

При защемлении колонны в фундаменте и жестком креплении балки к колонне расчетная длина равна 0,5l, однако в расчете обычно считают 0,7l т.к. балка под действием нагрузки изгибается и полного защемления нет.

На практике отдельно колонну не считают, а моделируют в программе раму или 3-х мерную модель здания, нагружают ее и рассчитывают колонну в сборке и подбирают необходимый профиль, но в программах бывает трудно учесть ослабление сечения отверстиями от болтов, поэтому бывает необходимо проверять сечение вручную.

Чтобы рассчитать колонну нам необходимо знать максимальные сжимающие/растягивающие напряжения и моменты, возникающие в ключевых сечениях, для этого строят эпюры напряжения. В данном обзоре мы рассмотрим только прочностной расчет колонны без построения эпюр.

Расчет колонны производим по следующим параметрам:

1. Прочность при центральном растяжении/сжатии

2. Устойчивость при центральном сжатии (в 2-х плоскостях)

3. Прочность при совместном действии продольной силы и изгибающих моментов

4. Проверка предельной гибкости стержня (в 2-х плоскостях)

1. Прочность при центральном растяжении/сжатии

Согласно СП 16.13330 п. 7.1.1 расчет на прочность элементов из стали с нормативным сопротивлением Ryn ≤ 440 Н/мм2 при центральном растяжении или сжатии силой N следует выполнять по формуле

где N — нагрузка на сжатие/растяжение;

An — площадь поперечного сечения профиля нетто, т.е. с учетом ослабления его отверстиями;

Ry — расчетное сопротивление стали проката (зависит от марки стали см. Таблицу В.5 СП 16.13330);

γс — коэффициент условий работы (см. Таблицу 1 СП 16.13330).

По этой формуле можно вычислить минимально-необходимую площадь сечения профиля и задать профиль. В дальнейшем в проверочных расчетах подбор сечения колонны можно будет сделать только методом подбора сечения, поэтому здесь мы можем задать отправную точку, меньше которой сечение быть не может.

2. Устойчивость при центральном сжатии

Расчет на устойчивость производится согласно СП 16.13330 п. 7.1.3 по формуле

где N — нагрузка на сжатие/растяжение;

A — площадь поперечного сечения профиля брутто, т.е.без учета ослабления его отверстиями;

Ry — расчетное сопротивление стали;

γс — коэффициент условий работы (см. Таблицу 1 СП 16.13330);

φ — коэффициент устойчивости при центральном сжатии.

Как видим эта формула очень напоминает предыдущую, но здесь появляется коэффициент φ, чтобы его вычислить нам вначале потребуется вычислить условную гибкость стержня λ (обозначается с чертой сверху).

где Ry — расчетно сопротивление стали;

E — модуль упругости;

λ — гибкость стержня, вычисляемая по формуле:

где lef — расчетная длина стержня;

i — радиус инерции сечения.

Расчетные длины lef колонн (стоек) постоянного сечения или отдельных участков ступенчатых колонн согласно СП 16.13330 п. 10.3.1 следует определять по формуле

где l — длина колонны;

μ — коэффициент расчетной длины.

Коэффициенты расчетной длины μ колонн (стоек) постоянного сечения следует определять в зависимости от условий закрепления их концов и вида нагрузки. Для некоторых случаев закрепления концов и вида нагрузки значения μ приведены в следующей таблице:

Радиус инерции сечения можно найти в соответствующем ГОСТ-е на профиль, т.е. предварительно профиль должен быть уже задан и расчет сводится к перебору сечений.

Т.к. радиус инерции в 2-х плоскостях для большинства профилей имеет разные значения на 2-х плоскостей (одинаковые значения имеют только труба и квадратный профиль) и закрепление может быть разным, а следственно и расчетные длины тоже могут быть разные, то расчет на устойчивость необходимо произвести для 2-х плоскостей.

Итак теперь у нас есть все данные чтобы рассчитать условную гибкость.

Если предельная гибкость больше или равна 0,4, то коэффициент устойчивости φ вычисляется по формуле:

значение коэффициента δ следует вычислить по формуле:

коэффициенты α и β смотрите в таблице

Значения коэффициента φ, вычисленные по этой формуле, следует принимать не более (7,6/ λ 2) при значениях условной гибкости свыше 3,8; 4,4 и 5,8 для типов сечений соответственно а, b и с.

This article has 39 Comments

Здравствуйте! У меня от родителей остался фундамент для трехэтажного дома. Можно ли выполнить металлический несущий каркас, перекрытия между этажами будут бетонные питы, а внутренние и наружные стены уже потом заполнить какой-либо теплоизоляционой кладкой. К сожалению не могу прикрепить файл.

Трудно сказать выдержит ли фундамент, хотя металлоконструкции в целом весят меньше, но передают нагрузку сосредоточенно.
Металлоконструкции нельзя заполнять теплоизоляцией, их обычно обшивают снаружи сэндвич-панелями т.к. по металлу будет мостик холода, конденсат и коррозия.
Если это сделано для частного дома лучше использовать керамзитобетон, кирпич и традиционные утеплители.
Попросите знающего человека осмотреть фундамент, пусть подскажет как строить дальше, в любом случае без проекта не советую делать — может обернутся потерей денег.

Благодарю за полезный совет) Знающего человека к сожалению не могу найти. А можно каким-либо способом распределить нагрузку на фундамент?

Использовать ростверк, он в любом случае нужен т.к. нет уверенности что фундамент сделан хорошо. Ростверк железобетонный. Он позволит распределить нагрузку по всему фундаменту.
И все же обратитесь к профессионалу, поверьте, будет дешевле. Без проекта, на имеющемся фундаменте построить хорошо очень трудно. Есть очень много подводных камней.

Спасибо.
А шо теперя делать с бимоментом? Если SCAD не считает? В игнор? Или СНиП в топку? Вот смотрю для ЛСТК бимомент существенен. ЛСТК ваще дебри. Ужос, однако…
Еще раз, спасибо. Все технично.

На данный момент СП носит рекомендательный характер, поэтому бимомент можно при расчетах не учитывать. В конструкциях необходимо применять конструктивны меры для того, чтобы бимомент не образовывался — нагрузки должны передаваться через ось симметрии или близко к ней.
Думаю что даже если бимомент в колонне каким-то образом появится, он не сыграет большую роль, потому что в колоннах, в основном, критическим фактором является расчет на устойчивость.

Спасибо за полезную статью.

Правильно ли я выбрал трубу диаметром 89мм, толщина стенки 2,5 мм, для установки пластиковой емкости на 1000 литров на высоту 2,3 м. Сетка колонн 1х1,2м , 4 колонны-высота каждой 2,8 м, забетонированы на глубину 0.5 метра, бетон В20, основание глина, потом щебень 5 см, к концу трубы приварена пластина 70х150мм. Есть ли небольшой запас прочности? Заранее спасибо!

В вашем случае нужно проверить на предельную гибкость, устойчивость при центральном сжатии и прочность при совместном действии продольной нагрузки и момента (момент образуется от ветра).
По предельной гибкости стойки точно не проходят — должно быть не больше 150, а получается 2500 мм х 2 / 0,353*89 = 159, т.е. труба должна иметь диаметр минимум 95 мм.
По устойчивости пройдет — нагрузка не большая, а на момент надо проверять.
Рекомендую взять трубу диаметром 133 мм для 2,5 м — будет надежнее.

Расчет базы колонны и оголовка в будущем покажите??

Почему бы и нет, кстати в SCAD есть очень удобная программа Комета-2 — там можно легко рассчитать базу колонны.

Добрый день, сконструировал упор под грузовой автомобиль грузоподъемностью — 25 тонн (внешне похож на гидравлический бутылочный домкрат). В качестве центральной опоры(колонны) заложил трубу, наружным диаметром — 200 мм, толщиной стенки — 10 мм, высотой 760 мм. А в остальных участках использовал лист толщиной 16 мм (верхняя и нижняя плиты, косынки). Так как из всех использованных материалов в конструкции упора, труба имеет наименьшее сечение, выбрал ее для расчета на сжатие и устойчивость. Результат (материал сталь 09Г2С, предел текучести — 34 кг/мм2) по расчету на сжатие выдал — 130 тонн, на устойчивость — 65 тонн. Правильно ли я посчитал?

Если критическим фактором является устойчивость, то можно взять сталь С245, если конечно не требуется большая ударная вязкость для северных районов или просто сильные динамические нагрузки. А так вроде все правильно — несущая способность 65 тонн по пределу устойчивости > 25 тонн.

Добрый день!
Помогите, пожалуйста, расчитать металлоконструкцию 3-х этажного дома: подобрать колонны и балки. Размеры констукции: 6х12м 3 м высотой.

Слишком большой вопрос, слишком мало информации. Необходимо вначале прорисовать каркас в расчетной программе, например в SCAD или Лира-САПР, затем задать нагрузки и уже на основе этого подобрать сечения. Поэтому начните с освоения расчетной программы. Несколько уроков по SCAD я уже выкладывал (хотя для рассмотрения данного вопроса этой информации еще не достаточно), думаю найду время продолжить и рассмотреть такие вопросы, но сделать работу за вас я не смогу, т.к. у меня нет на это лишнего времени, да и смысл блога заключается в том, чтобы поделиться знаниями, а не сделать работу за других.

Добрый день! У меня проблема такого характера: есть двутавр на 20, который хочу использовать в качестве колонн для одного ряда стеновых панелей 6000*1800*300…….выдержит или нет? даже не знаю как приложить вес панели к колонне для расчета и какой минимальный размер нижнего фланца необходим? спасибо

Нагрузку от стеновой панели обычно прикладывают как равномерно-распределенную непосредственно на колонну либо через прогоны (зависит от способа крепежа панелей). Кроме веса панели необходимо добавить изгибающий момент из-за того, что центр тяжести панелей не проходит через центр тяжести колонны, т.е. имеется плечо сил (эксцентриситет). Этот момент равен произведению веса панели на расстояние между центром панели и осью колонны. В вашем случае 150+100=250мм если панели крепятся непосредственно на колонну без прогонов. Если еще есть прогоны между панелью и колонной, то еще прибавить ширину прогонов. Это касаемо как прикладывать нагрузку от панели на колонну.
Что касается выдержит или нет, то надо смотреть что еще держит колонна (кровлю, перекрытие, другие конструкции учесть ветровую нагрузку, закрепление).

Добрый день! подскажите выдержит ли колонна из профильной стальной трубы 100Х100Х3 мм плиты перекрытия 120 см шириной и мансардный этаж. в угловом окне? Угловое окно 200Х150 см с одной стороны и такое же с другой стороны колонна непосредственно в углу опирается на приваренный лист металла 8мм 250Х250 мм и анкерами прикручена к фундаменту, затем 90 см снизу от фундамента придавлена кладкой ракушечника прочность. м25, получается вся колонна внутри кладки на 90 см. а сверху колонна приварена такой же пластиной металла и забетонирована в армированный бетонный пояс по всему периметру, завязана арматурой. Получается на колонне лежат 2 плиты перекрытия и кладка в 2 блока. Заранее большое спасибо!

Во-первых вы дали слишком мало информации, чтобы можно было сказать однозначно.
Во-вторых я и написал статью чтобы вы сами смогли посчитать её.
Соберите нагрузку (всю нагрузку, которая будет сверху включая снеговую и от веса мебели и человека (150-200 кг/м2)), назначьте закрепление (судя по всему оно у вас шарнирное с обоих сторон), длину и посчитайте. В вашем случае нужно проверить по пункту 2 и 4.

подскажите максимальную нагрузку на двутавр 24 пролет 3 м

Во-первых статья написана, чтобы человек сам мог посчитать максимальную нагрузку.
во-вторых вы задали слишком мало условий: нет марки стали, закрепления, как у вас приложена нагрузка (сверху, сбоку, какое плечо нагрузки, есть ли изгибающий момент). Если вы не знаете о чем идет речь, то лучше попросите специалиста вам запроектировать конструкции — в любом случае выйдет дешевле.
В статье написаны 4-ре условия, которым колонна должна соответствовать, т.е. если даже по одному условию колонна не проходит, то её несущая способность считается не достаточной.

Помогите рассчитать металоконструкцию, НЕ безвозмездно.
8-928-195-40-16 Александр

Здравствуйте. Возник вопрос по поводу колонны из металлической трубы, выдержит ли она. Мы купили 2х этажный домик 6 на 9 метров с подвалом – перекрытия каждого этажа сделаны из бетонных плит. Так вот в месте, где проходит межэтажная лестница, получается, что плита перекрытия 2го этажа и плита перекрытия 1го этажа лежат плите перекрытия подвала. Получается как бы, что потолок подвала, держит 2 плиты перекрытия. У нас есть в наличии металлические трубы 11см в диаметре – толщиной 0.5см. Можно ли их забетонировать в землю, для того чтобы они поддерживали плиту, и она вдруг не переломилась? Выдержат ли они? Как вариант можно забетонировать 2 трубы и сверху на них положить швейлер, он как раз 12-14 см шириной. Можете что-то посоветовать?

Забыл добавит, в подвале только наружные стены — внутренних перегородок нет.

Доброго времени суток. Очень понравилась ваша статья, сразу видно человека увлеченного. Планирую строить жилой коттедж, из металлоконструкций. Сколько будут стоить Ваши услуги по расчётам элементов строения?

Здравствуйте! А как будет вестись расчет для пятигранной метал. колонны?

Если это сечение стандартное, то должны быть и расчётные параметры этого сечения. Соответственно считаем как обычную колонну. Также есть программы для расчёта параметров сечения, например конструктор сечений в SCAD. Если нет ни того ни другого можно вписать круг внутри пятигранника и посчитать для него, правда этот расчёт будет не совсем корректен, но с запасом.

Здравствуйте, подскажите, как правильно рассчитать V-образную колонну трубчатого сечения. Продольные усилия в стержнях известны. Рассчитываем каждую стойку как сжато-изгибаемый элемент? Получается нужно разложить продольное усилие в стержне на составляющие, и вертикальную составляющую брать для подбора сечения?

Воспользоваться конструктором сечений в SCAD. Программа может построить любой профиль и высчитать расчётные параметры профиля.

Денис, где можно бесплатно скачать SCAD ?

SCAD, насколько я знаю, не распространяют бесплатно. Но есть аналогичная программа Лира САПР и у нее есть бесплатная версия, скачать можно по ссылке http://www.liraland.ru/files/lira2013/

Скажите пожалуйста какой вес труба выдержит 159*4 при высоте 7 метров?

Поймите, нельзя так просто сказать сколько она выдержит, многое зависит от того как приложена нагрузка. Если она идёт прямо по центру это одно, если смещена относительно центра, то уже появляется изгибающий момент. Может еще горизонтальная нагрузка есть.
Вначале нужно построить эпюры, потом приступать к расчёту стойки.

Какой примерно процент прочности забирает учет бимомента?

«Коэффициент α в данной формуле это коэффициент использования профиля, согласно расчету на устойчивость при центральном сжатии.»
Не совсем так, там же в примечании написано, что в необходимых случаях необходимо применять фи-е — коэффициент устойчивости при сжатии с изгибом.

добрый день , подскажите пожалуйста, приготовил опалубку для балконной плиты, полукруг, диаметр основания 5м, толщина плиты планирую 15см, опора на стену дома были оставлены выпуски 120 уголка и на расстоянии 1,5м от основания полукруга 2 стойки из 73 трубы х5,5мм марка 09Г2с оринтировочномуфтовая труба, судя по нагрузке вес плиты 7,5 тонны, сомнение гложут выдержит ли такая труба ??

В грузоподъемном устройстве SERAPID (Франция) несущим элементом является работающая в качестве колонны шарнирная цепь, звенья которой имеют форму параллелепипеда, а ось шарнира смещена к углу. При этом, имеется возможность складывания цепи в одном направлении, и радиус инерции, естественно, при этом равен «0». Известно, что это г/п устройство имеет широкое применение. Вопрос: как быть с ограничением гибкости для сжатых стержней?

Добрый день . Помогите определиться с подбором сечения для сплошной металлической колонны из двух швеллеров (в коробочку). Высота колонны 1,5 м. Нагрузка 2533 кг. Колонны несут нагрузку от площадки (балочная клетка под монолитное исполнение площадки толщ. 100 мм)

Источник статьи: http://buildingbook.ru/raschet-stalnoy-kolonni.html


Adblock
detector