Меню

Что такое результирующая сила и как ее найти



Результирующая сила. Кинетическая энергия. Работа результирующей силы.

Результирующая сила – это векторная сумма всех сил, действующих на данное тело.

Если тело некоторой массы m двигалось под действием приложенных сил, и его скорость изменилась от до то силы совершили определенную работу A.

Работа всех приложенных сил равна работе равнодействующей силы

Работа равнодействующей силы.

A = F1s cos α1 + F2s cos α2 = F1ss + F2ss = Fрss = Fрs cos α

Между изменением скорости тела и работой, совершенной приложенными к телу силами, существует связь. Эту связь проще всего установить, рассматривая движение тела вдоль прямой линии под действием постоянной силы В этом случае векторы силы перемещения скорости и ускорения направлены вдоль одной прямой, и тело совершает прямолинейное равноускоренное движение. Направив координатную ось вдоль прямой движения, можно рассматривать F, s, υ и a как алгебраические величины (положительные или отрицательные в зависимости от направления соответствующего вектора). Тогда работу силы можно записать как A = Fs. При равноускоренном движении перемещение s выражается формулой

Это выражение показывает, что работа, совершенная силой (или равнодействующей всех сил), связана с изменением квадрата скорости (а не самой скорости).

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Работа приложенной к телу равнодействующей силы равна изменению его кинетической энергии.

Это утверждение называют теоремой о кинетической энергии. Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения.

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m, движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Закон сохранения энергии при абсолютно упругом и абсолютно неупругом ударе.

Закон сохранения механической энергии

Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии:

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона. Сумму E = Ek + Ep называют полной механической энергией. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

Простым примером абсолютно упругого столкновения может быть центральный удар двух бильярдных шаров, один из которых до столкновения находился в состоянии покоя.

Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии центров.

В общем случае массы m1 и m2 соударяющихся шаров могут быть неодинаковыми. По закону сохранения механической энергии

Здесь υ1 – скорость первого шара до столкновения, скорость второго шара υ2 = 0, u1 и u2 – скорости шаров после столкновения.

Дата добавления: 2018-08-06 ; просмотров: 2277 ;

Источник статьи: http://studopedia.net/7_41_rezultiruyushchaya-sila-kineticheskaya-energiya-rabota-rezultiruyushchey-sili.html

Равнодействующая сила — понятие, формулы и примеры расчетов

Для рассмотрения термина «равнодействующая сила» придется воспользоваться некими абстрактными понятиями физики, теоретической механики. Упрощениями, условно отражающими реальный мир

Итак, примем во внимание, что:

Под объектом понимается не физическое тело с объемом, формой и внутренней структурой. Подразумевается «материальная точка», характеризующаяся только массой. То есть величиной, определяющей инерцию (стремление сохранять неподвижность) и гравитационные взаимодействия (притяжение предметов). Не стоит путать с весом. Последний является проявлением гравитации и меняется в зависимости от места измерения (географической широты).

События и наблюдения происходят в инерциальной системе отсчета. Где пространство и время однородны (идентичны в любой точке). Поворот системы отсчета не влияет на измерения.

Рассуждения корректны для скоростей существенно ниже скорости света и не распространяются на субатомный уровень.

Понятие силы

Возникло еще в трудах древнегреческих ученых. Носило скорее философский характер и было довольно запутанным и неоднозначным, что не мешало при этом античным инженерам-практикам производить весьма точные расчеты, поскольку понимание силы как причины движения было для них безусловным.

Позже проблемой занимались такие титаны как Роджер Бэкон и Уильям Оккам (английские философы и естествоиспытатели). Опять-таки без строгого физического подхода, но с более глубоким пониманием темы (теория «дальнодействия»).

Бэкман, Декарт, Галилей аргументированно оспорили архаичные теории. Классическая механика пробивала дорогу.

Иоганн Кеплер также придавал сначала силе эзотерические свойства. Но наблюдения за закономерностями перемещения небесных тел убили плохого теолога и породили ученого. Логично появилась идея общей силы тяготения. До Ньютона, вопреки распространенному заблуждению.

Ньютон подытожил и объединил ранее накопленные знания. Установил формулу зависимости действующей на тело силы с его движением (II-ой закон).

F – вектор (также имеется направление приложения) силы. В принятой РФ системе СИ (ISQ) измеряется в Ньютонах (Н, N в международном написании);

m – масса материальной точки (кг);

a – вектор получаемого ускорения (м/с 2 ).

При этом определение силы дано не было. Оно и понятно: явление не существует само по себе. Термин появился только для удобства расчетов и подразумевает меру воздействия стороннего тела или поля на наблюдаемый объект.

Возможно, что гравитация является действием поля. Закон всемирного тяготения был введен также Ньютоном.

· G – гравитационная постоянная;

· m1, m2 – массы материальных точек (кг);

· R – дистанция между объектами (м).

Тяготение Земли рассчитывается по традиционной формуле II-го закона Ньютона. Только «a» меняется на ускорение свободного падения «g».

Для примерных выкладок g берут равным 9,81 м/с 2 , что соответствует средней широте 45,5°. Для точных пользуются соответствующими таблицами.

Как измерить силу

В соответствии с I-м законом Ньютона, в инерциальных системах отсчета тело движется равномерно и прямолинейно либо покоится при отсутствии приложенных к нему сил. Или эти силы чем-то скомпенсированы.

Уравновесить усилие можно калиброванной пружиной, динамометром. Это статический способ. Типичный пример – замер силы тяжести при помощи весов.

Рассчитать силу можно, зная массу предмета и его ускорение. II-ой закон в помощь. В этом состоит динамический метод.

Равнодействующая сила

Если действуют несколько факторов одновременно, то результирующую силу можно найти по геометрическим правилам сложения.

Результат будет называться «вектор равнодействующей всех сил».

Лежащий неподвижно на горизонтальной поверхности объект подвергается действию двух сил — тяжести и реакции опоры. Они равны по модулю и противоположно направлены: ведь объект покоится и равнодействующая сила равна нулю.

Примеры решения задач

Машина массой 1 тонна движется по ровной горизонтальной поверхности с ускорением 1 м/с 2 . Тяга силового агрегата составляет 1500 Н. Укажите действующие на транспортное средство силы.

Сила тяжести направлена вертикально вниз. Модуль определяется следующим образом:

Fт = mg = 1000 (кг) х 9,81 (м/с 2 ) = 9810 (Н).

Упругая реакция дороги направлена противоположно и равна тяготению, поскольку движение в данной плоскости отсутствует и равнодействующая равна нулю.

F = ma = 1000 (кг) х 1 (м/с 2 ) = 1000 (Н).

Fcопр = Fтяги – F = 1500 (Н) – 1000 (Н) = 500 (Н).

Заключение

Несколько выводов напоследок:

Состояние покоя и прямолинейное равномерное движение механически аналогичны.

Сила придает телу ускорение, зависящее от массы объекта.

Равнодействующая образуется геометрическим суммированием приложенных к материальной точке векторов сил.

Источник статьи: http://nauka.club/fizika/ravnodeystvuyushchaya-sila.html


Adblock
detector