Меню

Что такое пропорция в математике и как ее найти



Пропорция

Продолжаем изучать соотношения. В данном уроке мы познакомимся с пропорцией.

Что такое пропорция?

Пропорцией называют равенство двух отношений. Например, отношение равно отношению

Данная пропорция читается следующим образом:

Десять так относится к пяти, как два относится к одному

Дроби, из которых составлена пропорция, всегда равны. Например, если в пропорции выполнить деление в обеих дробях, то получится число 2 в обеих частях:

Предположим, что в классе 10 девочек и 5 мальчиков

Запишем отношение десяти девочек к пяти мальчикам:

Преобразуем данное отношение в дробь

Выполнив деление в этой дроби, мы получим 2. То есть десять девочек так будут относиться к пяти мальчикам, что на одного мальчика будет приходиться две девочки

Теперь рассмотрим другой класс в котором две девочки и один мальчик

Запишем отношение двух девочек к одному мальчику:

Преобразуем данное отношение в дробь:

Выполнив деление в этой дроби, мы снова получим 2. То есть две девочки так будут относиться к одному мальчику, что на этого одного мальчика будут приходиться две девочки:

Можно сделать вывод, что отношение пропорционально отношению . Поэтому оно и читалось как «десять так относится к пяти, как два относится к одному» .

В нашем примере десять девочек так относятся к пяти мальчикам, как и две девочки относятся к одному мальчику.

Пример 2. Рассмотрим отношение 12 девочек к 3 мальчикам

а также отношение 12 девочек к 2 мальчикам

Данные отношения не являются пропорциональными. Другими словами, мы не можем записать, что , поскольку первое отношение, как видно на рисунке показывает, что на одного мальчика приходятся четыре девочки, а второе отношение показывает, что на одного мальчика приходятся шесть девочек.

Поэтому отношение не пропорционально отношению .

Из рассмотренных примеров видно, что пропорция составляется из дробей. Первая рассмотренная нами пропорция состоит из двух дробей. Если выполнить деление в этих дробях, то получим, что 2=2 . Понятно, что 2 равно 2.

Вторая рассмотренная нами пропорция была . Мы пришли к выводу, что она составлена неправильно, поэтому поставили между дробями и знак не равно (≠). Если выполнить деление в этих дробях, получим числа 4 и 6. Понятно, что 4 не равно 6.

Рассмотрим пропорцию . Данная пропорция составлена правильно, поскольку отношения и равны между собой:

Можно проверить это, выполнив деление в этих дробях, то есть разделить 4 на 2, а 8 на 4. В результате с двух сторон получатся двойки. А 2 равно 2

Все числа, находящиеся в пропорции (числители и знаменатели обеих дробей) называются членами пропорции. Эти члены подразделяются на два вида: крайние члены и средние члены.

В нашей пропорции крайние члены это 4 и 4, а средние члены это 2 и 8

Почему крайние члены называют крайними, а средние средними? Если записать пропорцию не в дробном, а в обычном виде, то сразу станет всё понятно:

Числа 4 и 4 располагаются с краю, поэтому их назвали крайними, а числа 2 и 8 располагаются посередине, поэтому их назвали средними:

С помощью переменных пропорцию можно записать так:

Данное выражение можно прочесть следующим образом:

a так относится к b, как c относится к d

Смысл данного предложения уже понятен. Речь идет о членах, участвующих в соотношении. a и d — это крайние члены пропорции, b и c — средние члены пропорции.

Основное свойство пропорции

Основное свойство пропорции выглядит следующим образом:

Произведение крайних членов пропорции равно произведению её средних членов.

Мы знаем, что произведение это ни что иное, как обычное умножение. Чтобы проверить правильно ли составлена пропорция, нужно перемножить её крайние и средние члены. Если произведение крайних членов будет равно произведению средних членов, то такая пропорция составлена правильно.

Например, проверим правильно ли составлена пропорция . Для этого перемножим её крайние и средние члены. Легко заметить, что крайние и средние члены пропорции располагаются «крест-накрест», поэтому в умножении нет ничего сложного. Перемножаем члены пропорции «крест-накрест»:

4 × 4 = 16 — произведение крайних членов пропорции равно 16.

2 × 8 = 16 — произведение средних членов пропорции так же равно 16.

4 × 4 = 2 × 8

4 × 4 = 2 × 8 — произведение крайних членов равно произведению средних членов. Значит пропорция составлена правильно.

Пример 2. Проверить правильно ли составлена пропорция

Проверим равно ли произведение крайних членов пропорции произведению её средних членов. Перемножим члены пропорции крест-накрест:

2 × 6 = 12 — произведение крайних членов пропорции равно 12

3 × 1 = 3 — произведение средних членов пропорции равно 3

2 × 6 ≠ 3 × 1 — произведение крайних членов пропорции НЕ равно произведению её средних членов. Значит пропорция составлена неправильно.

Поэтому в пропорции разумнее заменить знак равенства (=) на знак не равно (≠)

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Источник статьи: http://spacemath.xyz/proporciya/

Что такое пропорция

Что такое пропорция

Пропорция — это равенство двух отношения.

Пропорциональный — это такой, который находится в определенном отношении к какой-либо величине.

Пропорция всегда содержит равные коэффициенты.

Если выразить определение формулой, то выглядеть оно будет так:

  • a : b = c : d

a и d — крайние члены пропорции

Читается это выражение так: a так относится к b, как c относится к d

Это равенство двух отношений: 15 так относится к 5, как 9 относится к 3.

15 и 3 — крайние члены пропорции.

5 и 9 — средние члены пропорции.

Наглядный пример для понимания:

У нас есть восемь кусочков аппетитной пиццы и, предположим, четыре голодных друга.

  • Запишем эту непростую ситуацию в виде отношения 8 кусочков к 4 голодным друзьям: 8 : 4
  • Далее преобразовываем это отношение в дробь: 8/4
  • Выполняем деление: 8/4 = 2

Это значит, что 8 аппетитных кусочков пиццы будут так относиться к 4 голодным друзьям, что каждому голодающему достанется по 2 кусочка. Прекрасно!

А теперь представим, ситуацию, в которой есть только половина аппетитной пиццы, но при этом и голодных друга — всего два.

Что мы имеем: 4 кусочка и 2 друга, претендующих на них.

  • Запишем в виде отношения: 4 : 2
  • Преобразовываем получившееся отношение в дробь: 4/2
  • Выполняем деление: 4/2 = 2

Это значит, что 4 аппетитных кусочка будут так относиться к 2 голодным друзьям, что каждому из них достанется по 2 кусочка.

Оценив обе ситуации, делаем вывод, что отношение 8/4 пропорционально отношению 4/2. Отношения в пропорции — равные.

Вывод: знание математических пропорций пригодится при заказе пиццы. Быстренько прикидываем отношение количества человек, претендующих на пиццу, и число кусочков — и сразу заказываем побольше пиццы, чтобы никто не остался голодным😉

Чтобы ребенок понимал, как еще использовать математику в обычной жизни, запишите его на бесплатный вводный урок в онлайн-школу Skysmart.

Ученики занимаются в интерактивном формате, помогают героям комиксов справиться с коварными задачками, отслеживают прогресс в личном кабинете и не боятся школьных контрольных.

Основное свойство пропорции

Запомните основное свойство пропорции:

Произведение крайних членов пропорции равно произведению средних членов этой пропорции.

В виде формулы свойство выглядит так:

Мы знаем, что a и d — крайние члены пропорции, b и c — средние.

Это свойство следует применять, чтобы проверить пропорцию. Если все сходится согласно формулировке — пропорция составлена верно, и отношения в пропорции являются равными друг другу.

Давайте проверим несколько пропорций.

Пример 1. Дана пропорция:6/2 = 12/4

  • Чтобы проверить, верно ли составлена пропорция, перемножаем ее крайние члены: 6 * 4 = 24.
  • Далее перемножаем средние члены пропорции: 2 * 12 = 24
  • Произведение крайних членов пропорции равно 24, произведение средних членов пропорции также равно 24.
  • 6 * 4 = 2 * 12
    24 = 24

Делаем вывод, что пропорция 6/2 = 12/4 составлена верно.

Пример 2. Дана пропорция: 10/2 = 16/4

  • Перемножаем крайние члены пропорции: 10 * 4 = 40.
  • Перемножаем средние члены: 16 * 2 = 32.
  • Произведение крайних членов пропорции равно 40. Произведение средних членов пропорции равно 32.
  • 10 * 4 ≠ 16 * 2
    40 ≠ 32

Отсюда делаем вывод, что отношения в пропорции 10/2 ≠ 16/4 не являются равными.

Примеры решения задач

Чтобы потренироваться в составлении пропорций, решим вместе несколько задачек.

Задачка 1. Дана математическая пропорция: 15/3 = x/4

  1. По основному свойству пропорции перемножаем множители:
    15 * 4 = 3x
  2. Получаем уравнение: 60 = 3x
  3. 60/3 = x
    x = 20.

Ответ: в пропорции 15/3 = x/4, x = 20

Задачка 2. Найдите четвертый член пропорции: 18, 9 и 24.

  1. Записываем чиcла в виде дробей: 18/9 = 24/x
    Где x — четвертый член пропорции.
  2. По основному свойству пропорции, перемножаем средние члены: 9 * 24 = 216
  3. Выводим уравнение 18x = 216
  4. Находим x:
    x = 216 : 18
    x = 12
  5. Проверяем: 9 * 24 = 216, 18 * 12 = 216.
    Пропорция составлена верно.

Ответ: четвертый член пропорции — 12.

Задачка 3. 18 человек могут съесть пять килограммов суши за 8 часов, сколько часов понадобится 9 людям?

  1. Записываем числа в виде дроби: 18/9 = x/8
  2. Перемножаем множители по основному свойству пропорции: 18 * 8 = 9x
  3. Находим х:
    144 = 9x
    144 : 9 = 16

Ответ: 16 часов понадобится 9 людям, чтобы съесть все суши.

Задачка 4. Дана пропорция: 20/2 = y/4

  1. По основному свойству пропорции перемножаем множители:
    20 * 4 = 2y
  2. Получаем уравнение: 80 = 2y
  3. Находим у:
    80/2 = y
    x = 40.
  4. Проверяем пропорцию: 20 * 4 = 80, 40 * 2 = 80.

Ответ: в пропорции 20/2 = y/4, y = 40

Есть одна проверенная пропорция, которая выглядит вот так: математика так относится к ученику, как ученик относится к математике — полное равенство отношений.

Чтобы ваш ребенок выстроил добрые пропорциональные отношения с математикой, записывайтесь на бесплатный вводный урок в онлайн-школу Skysmart. Наши преподаватели объяснят самые сложные темы и научат ребенка получать настоящее удовольствие от решения задачек.

Источник статьи: http://skysmart.ru/articles/mathematic/chto-takoe-proporciya


Adblock
detector