Меню

Что такое подобные и как их найти



Подобные слагаемые

Свойства сложения и умножения

В буквенных выражениях числа могут быть обозначены буквами. Поэтому для всех буквенных выражений верны следующие равенства, выражающие свойства сложения и свойства умножения:

Свойства сложения Свойства умножения
a + b = b + a
(a + b) + c = a + (b + c)
a + 0 = a
a + (-a) = 0
ab = a + (-b)
ab = ba
(ab)c = a(bc)
a(b + c) = ab + ac
a = 1 · a
a = -1 · a
a · 0 = 0

С помощью этих свойств можно упрощать буквенные выражения. Например:

Слагаемые 5a, 12a и -7a отличаются только числовыми множителями, такие слагаемые называются подобными.

Подобные слагаемые

Подобные слагаемые — это слагаемые, отличающиеся только числовыми множителями и имеющие одинаковую буквенную часть. Пользуясь свойствами сложения и умножения, можно упрощать выражения, содержащие подобные слагаемые. Например, упростим выражение:

Такое упрощение выражения называется приведением подобных слагаемых. В простых примерах промежуточные вычисления можно опустить:

Приведение подобных слагаемых

Приведение подобных слагаемых — это упрощение выражения, содержащего подобные слагаемые, путём их сложения.

Пример 1. Приведите подобные слагаемые:

Решение: Сначала надо найти в выражении подобные слагаемые:

теперь можно их сгруппировать, вынести общий множитель за скобки и привести подобные слагаемые:

Пример 2. Раскройте скобки и приведите подобные слагаемые:

Источник статьи: http://izamorfix.ru/matematika/arifmetika/podobnye_slagaemye.html

Подобные треугольники

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

Источник статьи: http://egemaximum.ru/podobnye-treugolniki/

Подобие треугольников. Визуальный гид (ЕГЭ – 2021)

Что такое равные треугольники, понятно более или менее всем: их можно правильно наложить – и они совпадут.

А вот что такое «подобные треугольники»?

Вроде как «похожие», но как это понимать?

Читай эту статью и все поймешь!

А еще посмотри обязательно вебинар с нашего курса «Подготовка к ЕГЭ по математике на 90+» (он в самом начале статьи) и ты сможешь не только решить простые задачи но и задачи на доказательство (№16 на ЕГЭ)!

ШПОРА О ПОДОБИИ ТРЕУГОЛЬНИКОВ

Подобные треугольники – это треугольники, у которых все углы равны и все стороны строго пропорциональны.

Коэффициент пропорциональности называется коэффициентом подобия ( displaystyle k).

( angle A = angle ,angle B = angle ,angle C = angle )

Отношение периметров подобных треугольников равно коэффициенту подобия: ( displaystyle frac<<

_>><<

_<<_<1>><_<1>><_<1>>>>>=k).

Отношение площадей подобных треугольников равно квадрату коэффициента подобия: ( displaystyle frac<<_>><<_<<_<1>><_<1>><_<1>>>>>=<^<2>>).

Признаки подобия треугольников:

I признак (по двум углам):

II признак (по одному углу и отношению заключающих его сторон):

III признак (по отношению трех сторон):

Видео: Задача №16. Подобие треугольников. Задачи на доказательство (2 часа 20 минут — да, да, это все очень серьезно!)

Это видео — один из вебинаров нашей Программы подготовки к профильному ЕГЭ по математике. Вся программа — это:

Что такое подобные треугольники?

Вот, например, такой и такой:

Похожи эти треугольники? Ты скажешь, конечно же нет!

Посмотри внимательно, тоже похожи.

А теперь строго математически!

Треугольники называются подобными, если у них все углы равны и все стороны пропорциональны.

То есть все углы равны и все стороны одного треугольника в ( displaystyle 5), или, в ( displaystyle 7), или в ( displaystyle 8,21) (или и т.д.) больше сторон другого треугольника.

Записываются слова «треугольник ( displaystyle ABC) подобен треугольнику ( displaystyle <_<1>><_<1>><_<1>>)» с помощью такого значка:

То число раз, в которое отличаются стороны подобных треугольников, называются коэффициентом подобия, обозначается обычно с помощью буквы ( displaystyle k).

(angle A = angle ,angle B = angle ,angle C = angle )

Можно было бы все так и оставить, но, как и в случае с равенством треугольников, ленивым математикам стало слишком неохота проверять равенство ВСЕХ трех углов, и пропорциональность ВСЕХ трех сторон. И они придумали признаки подобия треугольников.

Автор этого учебника, Алексей Шевчук, проводит бесплатные вебинары по самым сложным задачам ЕГЭ по математике и информатике.

На вебинарах все будет еще понятнее. Шорткаты, лайфхаки, разбор «капканов» — все там.

Признак подобия треугольников «по двум углам»

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Помнишь еще, что «( displaystyle sim< >)» обозначает слова «подобен»?

Осознай удобство! Вместо того, чтобы проверять 6 утверждений – 3 равных угла и 3 пропорциональных стороны – ДОСТАТОЧНО РАВЕНСТВА ВСЕГО ДВУХ УГЛОВ! И это вообще-то самых удобный и часто используемый признак.

Признак подобия треугольников «две пропорциональные стороны и угол между ними»

Если треугольники имеют одинаковый угол, и стороны, заключающие этот угол, пропорциональны, то такие треугольники подобны.

Его автор, Алексей Шевчук, ведет наши курсы подготовки к ЕГЭ по математике и информатике.

Приходи, научишься решать задачи любой сложности с самого нуля. Шаг за шагом.

От 2000 до 3990 руб / месяц, 3 раза в неделю по 2 часа.

Признак подобия треугольников «три пропорциональные стороны»

Если три стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Самый главный секрет

Признаки нам рассказали о том, как обнаружить подобные треугольники, а теперь, как же воспользоваться найденным?

Зарегистрируйся один раз и ты откроешь все 100 статей учебника

А также получишь доступ к видеоурокам и другим бесплатным материалам курса «Подготовка к ЕГЭ с репетитором»

* Если не понравятся бесплатные материалы, ты сможешь отписаться в любой момент

Ну вот, что же хорошего? А то, что тогда ВСЕ элементы одного треугольника ровно в ( displaystyle 2) (или сколько у тебя выйдет раз) больше, чем элементы другого треугольника.

НЕ ТОЛЬКО стороны, но и высоты, биссектрисы, медианы, радиусы вписанной и описанной окружности и т.д. Есть одно ВАЖНОЕ исключение: ПЛОЩАДЬ. Запомни:

Отношение площадей подобных треугольников равно КВАДРАТУ коэффициента подобия.

Почему так? А вспомни самую простую формулу площади:

( displaystyle frac<<_<1>>>=k), то есть ( displaystyle h=<_<1>>cdot k)

То есть ( displaystyle S=<^<2>>cdot <_<1>>) или ( displaystyle frac<<_<1>>>=<^<2>>).

P.S. Анонс платных и бесплатных вебинаров на эту неделю (с 1-го по 7-е февраля 2021)

Вторник. 18-00 мск. Экономическая задача. ЕГЭ 17. Кредиты — 1 — https://youclever.org/prices-math-repetitor-d/

Это 2-й из 4-х уроков курса по экономической задаче. По окончании курса вы сможете решать любую экономическую задачу (в том числе на оптимизацию, где надо знать производную) и получите свои 3 балла на ЕГЭ. Все уроки доступны в записи до 1 августа 2021 года.

Среда. 18-00 мск. Планиметрия ЕГЭ №16. Касательные, касающиеся окружности — https://youclever.org/prices-math-repetitor-d/

Это 9-й из 12-ти уроков на планиметрию. Количество уроков курса говори само за себя. Планиметрия — одна из самых сложных тем. Но мы разберемся со всеми сложностями. Покупайте курс и вы сможете получить 3 балла на ЕГЭ по планиметрии. Все уроки доступны в записи до 1 августа 2021 года.

Пятница. 18-00 мск. Экономическая задача. ЕГЭ 17. Кредиты — 2 — https://youclever.org/prices-math-repetitor-d/

Это 3-й из 4-х уроков курса по экономической задаче. По окончании курса вы сможете решать любую экономическую задачу (в том числе на оптимизацию, где надо знать производную) и получите свои 3 балла на ЕГЭ. Все уроки доступны в записи до 1 августа 2021 года.

Бесплатный воскресный вебинар. 11-00. ЕГЭ 19. Задача — загадка.

Регистрация здесь: https://youclever.org/free-sunday-webinars/ Кстати, зарегистрируйтесь один раз и вы будете получать приглашения на ВСЕ бесплатные вебинары до конца года.

ИНФОРМАТИКА

Это 2-й из 8-ми уроков курса «Цикл с параметром (for). Массивы. Работа с файлами. ЕГЭ №17, 24, 25». Пройдите 8 уроков и вы сможете получить на ЕГЭ целых 4 первичных балла! Все уроки доступны в записи до 1 августа 2021 года.

Четверг. 18-00. Вложенные циклы и сложные условия — https://youclever.org/prices-informatics-repetitor-d/

Это 3-й из 8-ми уроков курса «Цикл с параметром (for). Массивы. Работа с файлами. ЕГЭ №17, 24, 25».

Эта тема чрезвычайно важна! На ЕГЭ по информатике за нее дают целых 4 первичных балла! За 8 уроков мы разберем все, что для этого нужно. Все уроки доступны в записи до 1 августа 2021 года.

Бесплатный воскресный вебинар 11-00. ЕГЭ №26. Жадный алгоритм. Олимпиадная задача и задача ЕГЭ.

Регистрация здесь: https://youclever.org/free-sunday-webinars/ Кстати, зарегистрируйтесь один раз и вы будете получать приглашения на ВСЕ бесплатные вебинары до конца года.

ОБЩИЕ ЗАМЕЧАНИЯ

По всем курсам математики и информатики по каждому уроку предусмотрены домашние задания и их проверка, чтобы вы не только поняли тему, но и САМОЕ ГЛАВНОЕ научились решать задачи.
И еще вы можете задавать вопросы Алексею Шевчуку в закрытой группе Вконтакте.

Приходите на бесплатные вебинары или покупайте курсы и готовьтесь системно вместе с нами!

Источник статьи: http://youclever.org/book/podobie-treugolnikov-1/


Adblock
detector