Меню

Что такое период функции и как его найти



Узнать ещё

Знание — сила. Познавательная информация

Как найти период функции

Как найти период функции вида y=Af(kx+b), где A, k и b — некоторые числа? Поможет формула периода функции

где T — период функции y=f(x). Эта формула позволяет быстро найти период тригонометрических функций такого вида. Для функций y=sin x и y=cos x наименьший положительный период T=2п, для y=tg x и y=ctg x T=п. Рассмотрим на конкретных примерах, как найти период функции, используя данную формулу.

Здесь А=5, k=3, b=-п/8. Для нахождения периода нам нужно только k — число, стоящее перед иксом. Поскольку период синуса T=2п, то период данной функции

А=2/7, k=-1/11, b=п/5. Поскольку период косинуса T=2п, то

А=0,3, k=5/9, b=п/7. Период тангенса равен п, поэтому период данной функции

А=9, k=0,4, b=-7. Период котангенса равен п, поэтому период данной функции есть

Источник статьи: http://www.uznateshe.ru/kak-nayti-period-funktsii/

Периодические функции

С периодическими функциями мы встречаемся в школьном курсе алгебры. Это функции, все значения которых повторяются через определенный период. Как будто мы копируем часть графика — и повторяем этот паттерн на всей области определения функции. Например, — периодические функции.

Дадим определение периодической функции:

Функция называется периодической, если существует такое число , не равное нулю, что для любого из ее области определения

Другими словами, это функция, значения которой не изменяются при добавлении к значениям её аргумента некоторого фиксированного ненулевого числа . Число называется периодом функции. Как правило, говоря о периоде, мы имеем в виду наименьший положительный период функции.

Например, — периодические функции.

Но не только тригонометрические функции являются периодическими. Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задачи:

1. Периодическая функция определена для всех действительных чисел. Ее период равен двум и Найдите значение выражения

График функции может выглядеть, например, вот так:

Отметим точку М (1; 5), принадлежащую графику функции . Поскольку период функции равен 2, значения функции в точках будут также равны пяти. Здесь k — целое число.

Как ведет себя функция в других точках — мы не знаем. Но знаем, что ее график состоит из повторяющихся элементов длиной 2, что и нарисовано.

Значения функции в точках -3 и 7 равны пяти. Мы получим:

2. График четной периодической функции совпадает с графиком функции на отрезке от 0 до 1; период функции равен 2. Постройте график функции и найдите f(4 ).

Построим график функции при

Поскольку функция четная, ее график симметричен относительно оси ординат. Построим часть графика при симметричную части графика от 0 до 1.

Период функции равен 2. Повторим периодически участок длины 2, который уже построен.

3. Найдите наименьший положительный период функции

Наименьший положительный период функции равен

График функции получается из графика функции сжатием в 3 раза по оси X (смотри тему «Преобразование графиков функций).

Значит, у функции частота в 3 раза больше, чем у функции , а наименьший положительный период в 3 раза меньше и равен . Значит, на отрезке укладывается ровно 3 полных волны функции

Рассуждая аналогично, получим, что для функции наименьший положительный период равен На отрезке укладывается ровно 5 полных волн функции

Числа 3 и 5 — взаимно простые. Поэтому наименьший положительный период функции равен .

4. Период функции равен 12, а период функции равен 8. Найдите наименьший положительный период функции

По условию, период функции равен 12. Это значит, что все значения повторяются через 12, через . Если мы выберем любую точку на графике функции то через значение функции будет такое же, как и в точке

Аналогично, все значения функции повторяются через . В этих точках значения будут такие же, как и в точке

На каком же расстоянии от точки расположена точка, в которой значение функции такое же, что и в точке ? Очевидно, на расстоянии Это значит, что число делится и на 12, и на 8, то есть является их наименьшим общим кратным. Значит, .

Наименьший положительный период суммы функций равен наименьшему общему кратному периодов слагаемых.

Источник статьи: http://ege-study.ru/periodicheskie-funkcii/

Как определить периодичность функции

Если F(x) — функция аргумента x, то она называется периодической, если есть такое число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.

Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.

Обычно математика интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.

Если F(x) — периодическая функция с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) — тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла наклона касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.

Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C — нет.

Если F1(x) и F2(x) — периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 — рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй — 15, то период их суммы будет равен НОК (12, 15) = 60.

Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.

Источник статьи: http://www.kakprosto.ru/kak-65928-kak-opredelit-periodichnost-funkcii

Что такое период функции и как его найти

Период функции – положительное число Т, обладающее двумя свойствами:
а) вместе с числом х в область определения данной функции входят также числа х + Т и хТ;
б) для любого значения х из области определения функции справедливы равенства f(xT) = f(x) = f(x + T).
Наименьшее из чисел Т, обладающих указанными свойствами, называется основным периодом функции.
Часто основной период функции называют просто ее периодом.
Функция, имеющая период, называется периодической. В школьной программе наиболее часто из периодических функций встречаются основные тригонометрические функции.
Очевидно, что если Т – период функции, то при любом натуральном (т.е. целом положительном) значении k число kT также будет ее периодом. Точнее, если периодическая функция у = f(x) непрерывна на каком-нибудь интервале и не является на нем константой (т.е. постоянной), то для нее существует наименьший период Т; тогда любой период этой функции имеет вид kT, где k – натуральное число.
Для построения графика периодической функции достаточно построить его на любом отрезке длиной в (основной) период, тогда весь график получится сдвигом построенной части вправо и влево на целое число периодов.

Источник статьи: http://school-collection.edu.ru/dlrstore-wrapper/bb41d1eb-50c6-4e6f-96eb-02a0d5b22765/Period_funkcii.html

Что такое период функции и как его найти

Период функции – положительное число Т, обладающее двумя свойствами:
а) вместе с числом х в область определения данной функции входят также числа х + Т и хТ;
б) для любого значения х из области определения функции справедливы равенства f(xT) = f(x) = f(x + T).
Наименьшее из чисел Т, обладающих указанными свойствами, называется основным периодом функции.
Часто основной период функции называют просто ее периодом.
Функция, имеющая период, называется периодической. В школьной программе наиболее часто из периодических функций встречаются основные тригонометрические функции.
Очевидно, что если Т – период функции, то при любом натуральном (т.е. целом положительном) значении k число kT также будет ее периодом. Точнее, если периодическая функция у = f(x) непрерывна на каком-нибудь интервале и не является на нем константой (т.е. постоянной), то для нее существует наименьший период Т; тогда любой период этой функции имеет вид kT, где k – натуральное число.
Для построения графика периодической функции достаточно построить его на любом отрезке длиной в (основной) период, тогда весь график получится сдвигом построенной части вправо и влево на целое число периодов.

Источник статьи: http://school-collection.edu.ru/dlrstore-wrapper/bb41d1eb-50c6-4e6f-96eb-02a0d5b22765/Period_funkcii.html


Adblock
detector