Меню

Что такое объем шара и как его найти



Объем шара

На этой странице вы можете рассчитать объем шара. Предлагаем вам 3 формулы и калькуляторы для них. Различаются они исходными данными. Вы можете найти объем шара зная его радиус, диаметр или длину окружности. Просто введите значение в калькулятор и получите мгновенный результат.

Шар — это геометрическое тело, состоящее из точек пространства, которые удалены от центра на одинаковое расстояние. Это расстояние называют радиусом шара.

Объем шара через радиус

Формула для нахождения объема шара через радиус: <3>pi r^3> , где r — радиус шара.

Объем шара через диаметр

Формула для нахождения объема шара через диаметр: <6>pi D^3> , где D — диаметр шара.

Объем шара через длину окружности

Формула для нахождения объема шара через длину окружности: <6pi^3>> , где L — длина окружности шара.

Эта формула легко выводится формулы объема шара через его радиус и формулы для нахождения длины окружности

Пример расчета

Найдем объем шара, радиус которого 1 метр. Подставим это значение в первую формулу и произведем вычисления:

<3>pi r^3 = dfrac<4><3>pi cdot 1^3 = dfrac<4><3>pi cdot 1 = 4,19 м^3>

Также на нашем сайте вы можете найти объем параллелепипеда.

Источник статьи: http://mnogoformul.ru/obem-shara-formula-i-raschet-onlayn

Нахождение объема шара: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем шара и разберем примеры решения задач для закрепления материала.

Формула вычисления объема шара

1. Через радиус

Объем (V) шара равняется четырем третьим произведения его радиуса в кубе и числа π .

Примечание: в расчетах значение числа π округляется до 3,14.

2. Через диаметр

Диаметр шара равняется двум его радиусам: d = 2R. А значит, формула вычисления объема может выглядеть следующим образом:

Примеры задач

Задание 1
Вычислите объем шара, если его радиус равняется 3 см.

Решение:
Применив первую формулу (через радиус) получаем:

Задание 2
Найдите объем шара, если известно, что его диаметр равен 12 см.

Решение:
Используем вторую формулу, в которой задействован диаметр:

Источник статьи: http://microexcel.ru/obyom-shara/

Объём шара

Онлайн калькулятор

Чему равен объём шара, если:

Чему равен объём шара, если:

Площадь поверхности шара Sпов =

Теория

Объём шара через радиус

Чему равен объём шара Vшара, если его радиус r?

Формула

Пример

Для примера посчитаем чему равен объём шара в кубических сантиметрах, если его радиус r = 2 см:

Vшара = 4/3 ⋅ 3.14 ⋅ 2³ = 4/3 ⋅ 3.14 ⋅ 8 = 100.48/3 ≈ 33.493 см³

Объём шара через диаметр

Чему равен объём шара Vшара, если его диаметр d?

Формула

Пример

Для примера посчитаем чему равен объём шара в кубических метрах, если его диаметр d = 0.5 м:

Vшара = 1/6 ⋅ π ⋅ 0.5³ = (3.14 ⋅ 0.125) / 6 ≈ 0.0654 м³

Объём шара через длину окружности

Чему равен объём шара Vшара, если длина его окружности L?

Формула

Пример

Для примера посчитаем чему равен объём шара в кубических миллиметрах, если длина окружности у него L = 50 мм:

Vшара = 50³ ⁄ 6 ⋅ 3.14² = 125000 / 59.1576 ≈ 2113 мм³

Объём шара через площадь поверхности шара

Чему равен объём шара Vшара, если площадь его поверхности Sпов?

Формула

Пример

Для примера посчитаем чему равен объём шара в кубических сантиметрах, если площадь поверхности у него Sпов = 225 см²:

Источник статьи: http://poschitat.online/obyom-shara

Как находить объем шара: основные формулы и пример их использования

Многие тела, которые мы встречаем в жизни или о которых слышали, имеют шарообразную форму, например футбольный мяч, падающая капля воды во время дождя или наша планета. В связи с этим является актуальным рассмотрение вопроса, как находить объем шара.

Фигура шар в геометрии

Перед тем как ответить на вопрос, как находить объем шара, рассмотрим подробнее это тело. Некоторые люди путают его со сферой. Внешне они действительно похожи, однако шар — это заполненный внутри объект, сфера же представляет собой лишь внешнюю оболочку шара бесконечно малой толщины.

С точки зрения геометрии шар можно представить совокупностью точек, причем те из них, которые лежат на его поверхности (они образуют сферу), находятся на одинаковом расстоянии от центра фигуры. Это расстояние называют радиусом. По сути, радиус — это единственный параметр, с помощью которого можно описать любые свойства шара, такие как площадь его поверхности или объем.

На рисунке ниже приведен пример шара.

Если внимательно посмотреть на этот идеальный круглый объект, то можно догадаться, как его получить из обычного круга. Для этого достаточно вращать эту плоскую фигуру вокруг оси, совпадающей с его диаметром.

Одним из известных древних литературных источников, в котором достаточно подробно рассматриваются свойства этой объемной фигуры, является труд греческого философа Евклида — «Элементы».

Площадь поверхности и объем

Рассматривая вопрос, как находить объем шара, помимо этой величины, следует привести формулу для его площади, поскольку оба выражения можно связать друг с другом, как будет показано ниже.

Итак, чтобы вычислить объем шара, следует применить одну из следующих двух формул:

Здесь R — радиус фигуры. Первая из приведенных формул является точной, однако, чтобы воспользоваться этим преимуществом, необходимо использовать соответствующее число знаков после запятой для числа pi. Второе выражение дает вполне хороший результат, отличаясь от первого всего на 0,03 %. Для ряда практических задач этой точности более чем достаточно.

Площадь поверхности шара равна этой величине для сферы, то есть выражается формулой S = 4 * pi * R2. Если отсюда выразить радиус, а затем подставить его в первую формулу для объема, тогда получим: R = √ (S / (4 * pi) ) = > V = S / 3 * √ (S / (4 * pi)).

Таким образом, мы рассмотрели вопросы, как найти объем шара через радиус и через площадь его поверхности. Эти выражения можно с успехом применять на практике. Далее в статье приведем пример их использования.

Задача с каплей дождя

Вода, когда находится в невесомости, приобретает форму шарообразной капли. Связано это с наличием сил поверхностного натяжения, которые стремятся минимизировать площадь поверхности. Шар, в свою очередь, обладает наименьшим ее значением среди всех геометрических фигур с одинаковой массой.

Во время дождя падающая капля воды находится в невесомости, поэтому ее формой является шар (здесь пренебрегаем силой сопротивления воздуха). Необходимо определить объем, площадь поверхности и радиус этой капли, если известно, что ее масса составляет 0,05 грамма.

Объем определить просто, для этого следует поделить известную массу на плотность H2O (ρ = 1 г/см3). Тогда V = 0,05 / 1 = 0,05 см3.

Зная, как найти объем шара, следует выразить из формулы радиус и подставить полученное значение, имеем: R = ∛ (3 * V / (4 * pi) ) = ∛ (3 * 0,05 / (4 * 3,1416) ) = 0,2285 см.

Теперь значение радиуса подставляем в выражение для площади поверхности фигуры, получаем: S = 4 * 3,1416 * 0,22852 = 0,6561 см2.

Таким образом, зная, как находить объем шара, мы получили ответы на все вопросы задачи: R = 2,285 мм, S = 0,6561 см2 и V = 0,05 см3.

Источник статьи: http://1ku.ru/obrazovanie/25733-kak-naxodit-obem-shara-osnovnye-formuly-i-primer-ix-ispolzovaniya/

Что такое шар (сфера): определение, свойства, формулы

В публикации мы рассмотрим определение и основные свойства шара и сферы, а также формулы, с помощью которых можно найти площадь поверхности и объем данных геометрических фигур.

Определение шара и сферы

Шар – это совокупность всех точек в трехмерном пространстве, которые находятся на расстоянии не больше заданного от точки, называемой центром шара (на рисунке ниже – это точка O). Другими словами, это совокупность точек, ограниченных сферой.

Шар образуется путем вращения круга вокруг своего диаметра (оси) на 180° или полукруга – на 360°.

Сфера – это поверхность шара. Образуется путем вращения окружности вокруг своего диаметра на 180° или полуокружности – на 360°.

Различают два вида шаров:

  • замкнутый – включает сферу;
  • открытый – исключает сферу.

Радиус шара (сферы) – расстояние между центром и точками, лежащими на его поверхности. На рисунке выше обозначен буквой R.

Диаметр шара (сферы) – отрезок, проходящий через центр шара и соединяющие две противоположные точки на его поверхности. Совпадает с осью шара, обычно обозначается буквой d.

Полюсы шара (сферы) – точки A и B, расположенные на концах его диаметра.

Свойства шара и сферы

Любое сечение шара плоскостью является кругом.

Любое сечение сферы плоскостью является окружностью.

Все точки сферы равноудалены от ее центра.

Сфера имеет самый большой объем среди всех фигур в пространстве, имеющих одинаковую площадь поверхности.

Через две любые диаметрально противоположные точки (максимально отдаленные друг от друга точки на окружности) можно провести неограниченное количество кругов для шара или окружностей для сфер радиусом, равным радиусу шара/сферы.

Примечание: если точки не диаметрально противоположны, то провести можно только один круг (окружность).

Части шара

Сегмент шара – это часть шара, отсекаемая плоскостью. Иногда называется шаровым сегментом. На рисунке ниже окрашен в зеленый цвет.

Срез шара – часть шара между двумя параллельными плоскостями, пересекающими его. Также может называться шаровым слоем. На рисунке ниже закрашен желтым.

Сектор шара – состоит из шарового сегмента и конуса, вершина которого находится центре шара, а основание совпадает с основанием сегмента. На рисунке ниже сектор залит оранжевым.

Формулы для шара/сферы

В формулах ниже используется как радиус (R), так и диаметр фигур (d). Число π в расчетах обычно округляется до двух знаков после запятой и приблизительно равняется 3,14.

Источник статьи: http://microexcel.ru/shar-sfera/


Adblock
detector