Меню

Что такое медиана в статистике и как ее найти



Медиана в статистике

Центральную тенденцию данных можно рассматривать не только, как значение с нулевым суммарным отклонением (среднее арифметическое) или максимальную частоту (мода), но и как некоторую отметку (значение в совокупности), делящую ранжированные данные (отсортированные по возрастанию или убыванию) на две равные части. Половина исходных данных меньше этой отметки, а половина – больше. Это и есть медиана.

Итак, медиана в статистике – это уровень показателя, который делит набор данных на две равные половины. Значения в одной половине меньше, а в другой больше медианы. В качестве примера обратимся к набору нормально распределенных случайных чисел.

Очевидно, что при симметричном распределении середина, делящая совокупность пополам, будет находиться в самом центре – там же, где средняя арифметическая (и мода). Это, так сказать, идеальная ситуация, когда мода, медиана и средняя арифметическая совпадают и все их свойства приходятся на одну точку – максимальная частота, деление пополам, нулевая сумма отклонений – все в одном месте. Однако, жизнь не так симметрична, как нормальное распределение.

Допустим, мы имеем дело с техническими замерами отклонений от ожидаемой величины чего-нибудь (содержания элементов, расстояния, уровня, массы и т.д. и т.п.). Если все ОК, то отклонения, скорее всего, будут распределены по закону, близкому к нормальному, примерно, как на рисунке выше. Но если в процессе присутствует важный и неконтролируемый фактор, то могут появиться аномальные значения, которые в значительной мере повлияют на среднюю арифметическую, но при этом почти не затронут медиану.

Медиана выборки – это альтернатива средней арифметической, т.к. она устойчива к аномальным отклонениям (выбросам).

Математическим свойством медианы является то, что сумма абсолютных (по модулю) отклонений от медианного значения дает минимально возможное значение, если сравнивать с отклонениями от любой другой величины. Даже меньше, чем от средней арифметической, о как! Данный факт находит свое применение, например, при решении транспортных задач, когда нужно рассчитать место строительства объектов около дороги таким образом, чтобы суммарная длина рейсов до него из разных мест была минимальной (остановки, заправки, склады и т.д. и т.п.).

Формула медианы

Формула медианы в статистике для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.

Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медиана будет соответствовать центральному значению ряда, номер которого можно определить по формуле:

Me – номер значения, соответствующего медиане,

N – количество значений в совокупности данных.

Тогда медиана обозначается, как

Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:

В интервальных данных выбрать конкретное значение не представляется возможным. Медиану рассчитывают по определенному правилу.

Для начала (после ранжирования данных) находят медианный интервал. Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.

Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.

Обратимся к наглядной схеме.

Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:

где xMe — нижняя граница медианного интервала;

iMe — ширина медианного интервала;

∑f/2 — количество всех значений, деленное на 2 (два);

S(Me-1)— суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;

fMe — число наблюдений в медианном интервале.

Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%.

Для примера рассчитаем медиану по следующим данным.

Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров.

По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.

То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.

Расчет медианы в Excel

Медиану для числовых данных легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.

Напоследок предлагаю задачку. Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:

Мода, медиана и среднее значение выборки – это разный способ определить центральную тенденцию в выборке.

Ниже видеоролик о том, как рассчитать медиану в Excel.

Источник статьи: http://statanaliz.info/statistica/opisanie-dannyx/mediana-v-statistike/

Медиана в статистике: понятие, свойства и расчет

Для того чтобы иметь представление о том или ином явлении, мы часто используем средние величины. Их применяют для того, чтобы сравнивать уровень зарплат в различных отраслях экономики, температуру и уровень осадков на одной и той же территории за сопоставимые периоды времени, урожайность выращиваемых культур в разных географических регионах и т. д. Впрочем, средняя является отнюдь не единственным обобщающим показателем – в ряде случае для более точной оценки подходит такая величина как медиана. В статистике она широко применяется в качестве вспомогательной описательной характеристики распределения какого-либо признака в отдельно взятой совокупности. Давайте разберемся, чем она отличается от средней, а также чем вызвана необходимость ее использования.

Медиана в статистике: определение и свойства

Представьте себе следующую ситуацию: на фирме вместе с директором работают 10 человек. Простые работники получают по 1000 грн., а их руководитель, который, к тому же, является собственником, — 10000 грн. Если вычислить среднее арифметическое, то получится, что в среднем зарплата на данном предприятии равна 1900 грн. Будет ли справедливым данное утверждение? Или возьмем такой пример, в одной и той же больничной палате находится девять человек с температурой 36,6 °С, и один человек, у которого она равна 41 °С. Арифметическое среднее в этом случае равно: (36,6*9+41)/10 = 37,04 °С. Но это вовсе не означает, что каждый из присутствующих болен. Все это наталкивает на мысль, что одной средней часто бывает недостаточно, и именно поэтому в дополнение к ней используется медиана. В статистике этим показателем называют вариант, который расположен ровно посередине упорядоченного вариационного ряда. Если посчитать ее для наших примеров, то получится соответственно 1000 грн. и 36,6 °С. Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности. Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.

Как найти медиану в статистике

Способ расчета данной величины во многом зависит от того, какой тип вариационного ряда мы имеем: дискретный или интервальный. В первом случае, медиана в статистике находится довольно просто. Все, что нужно сделать, это найти сумму частот, разделить ее на 2 и затем прибавить к результату ½. Лучше всего будет пояснить принцип расчета на следующем примере. Предположим, у нас есть сгруппированные данные по рождаемости, и требуется выяснить, чему равна медиана.

Источник статьи: http://fb.ru/article/108141/mediana-v-statistike-ponyatie-svoystva-i-raschet


Adblock
detector