Меню

Что такое коэфициент и как его найти



Урок 41 Бесплатно Коэффициент

В предыдущих уроках мы уже познакомились со свойствами действий с рациональными числами и раскрытием скобок. В этих темах у нас зачастую фигурируют не числа, а выражения.

В некоторых случаях у выражения можно выделить такое число, которое называют коэффициентом.

О том, что это такое, чему он равен, какой у него может быть знак и где его можно применить, мы узнаем в сегодняшнем уроке.

Определение коэффициента

Мы уже знаем переместительное и сочетательное свойства умножения.

Они позволяют нам упрощать выражения, что делает работу удобнее.

Упростим выражение (mathbf<2>acdot(-frac<2><3>b)>), используя эти свойства.

(mathbf<2>acdot(-frac<2><3>b)=frac<1><2>cdot acdot(-frac<2><3>)cdot b=frac<1><2>cdot(-frac<2><3>)cdot acdot b=-frac<1><3>cdot acdot b=-frac<1><3>ab>)

Мы представили выражения как произведение четырех множителей, сгруппировали в начало численные множители, а в конец буквенные, далее мы перемножили имеющиеся численные множители так, чтобы получилось одно число.

В данном случае коэффициентом выражения будет являться число (mathbf<-frac<1><3>>)

Определение: если выражения является произведением числа и одной или нескольких букв, то это число называется числовым коэффициентом (или сокращенно коэффициентом).

Коэффициент обычно пишут перед буквенными множителями; также после него можно написать знак умножения, но обычно его не пишут, а он просто подразумевается.

Каков коэффициент выражения (mathbf<0.4a>)?

Проверяем, подходит ли выражение под определение: да, оно подходит, так как является произведением.

Числовой множитель только один, значит, ничего считать не надо, и мы сразу можем сказать, что коэффициент данного выражения равен (mathbf<0.4>)

Каков коэффициент выражения (mathbf<3acdot 2b cdot 4cdot c>) ?

Опять же, данное выражение является произведением, правда коэффициент пока не ясен, так как числовой множитель не один.

В данном случае, как и в примере из начала урока множители необходимо сгруппировать, в результате получим, что коэффициент равен (mathbf<3cdot 2cdot 4=24>)

Что если мы хотим посчитать коэффициент выражения, которое является произведением одних лишь буквенных множителей?

Тут нам поможет следующая логика.

Например, очевидно такое равенство: (mathbf)

Так мы можем приписать умножение на единицу к любому выражению, при этом значение выражения никак не изменится.

Таким образом мы получим необходимый для определения числовой множитель, он и будет коэффициентом.

Поэтому если мы видим выражения, состоящие из одних лишь буквенных множителей, то мы знаем, что их коэффициент равен единице.

(mathbf) — коэффициент равен единице

Пройти тест и получить оценку можно после входа или регистрации

Знак коэффициента

Как мы уже определили в прошлой главе, коэффициент будет являться произведением числовых множителей.

Значит, знак коэффициента будет соответствовать знаку этого произведения.

Посчитаем коэффициент выражения (mathbf<3acdot (-3)cdot b>):

В данном случае коэффициент получился равным (mathbf<-9>), то есть отрицательным, так как произведение числовых множителей получилось отрицательным.

Посчитаем коэффициент выражения (mathbf<-frac<1><3>acdot (-frac<1><2>)bc>):

В данном случае количество отрицательных множителей четное, поэтому и коэффициент получается меньше нуля.

Если бы отрицательных множителей было число нечетное, то коэффициент получился бы отрицательным.

Правило: если выражение является произведением числовых и буквенных множителей и отрицательных числовых множителей четное количество, а остальные множители больше нуля, то коэффициент будет положительным; если же их нечетное количество, то коэффициент будет отрицательным.

Также мы знаем, что произведение любых чисел и нуля равняется нулю.

То же самое касается и буквенных множителей.

(mathbf<2>abcdot 0c=0>)

Поэтому такие выражения, которые являются произведением, а один из их множителей равен нулю, сами равны нулю.

Сразу можно понять, как можно использовать эти знания.

Представим, что у нас есть некоторая сумма. И если для каждого выражения, которое является слагаемым, мы посчитаем коэффициент, то, возможно, некоторые слагаемые уничтожаться, потому что их коэффициент окажется равен нулю.

Как видите, нам не пришлось вдаваться в подробности слагаемого, так как один из его числовых множителей равен нулю.

Пройти тест и получить оценку можно после входа или регистрации

Применение коэффициента выражений

Вы уже знаете с прошлых уроков, что умножение рациональных чисел обладает распределительным свойством относительно сложения.

То есть для любых рациональных чисел a, b и c будет верно равенство:

Мы знаем, что выражение, состоящее из рациональных чисел и включающее в себя операции сложения, вычитания, умножения и деления, также будет равняться рациональному числу.

А значит, вместо а, b и c могли стоять не просто рациональные числа, но и целые выражения — главное, чтобы одной букве соответствовало одно и только одно выражение.

Также известно, что отношение равенства симметрично, то есть из того, что ((mathbf)) следует, что ((mathbf))

Значит, мы можем использоваться распределительное свойство и так:

Часто мы будем называть такой переход вынесением общего множителя (общим является множитель с).

Теперь применим все эти факты на практике.

Упростим выражение (mathbf<345ab+345bc+345cd>) :

Первым делом мы добавили скобки для наглядности, чтобы показать, что дальше мы будет упрощать сумму первых двух слагаемых.

К ним мы применили распределительной свойство и вынесли общий множитель 345.

Заметим, что теперь выражение представляет из себя два слагаемых, и у них у обоих есть общий множитель 345.

Поэтому в следующем действие мы снова выносим общий множитель.

Теперь остается убрать ненужные скобки, и мы получаем упрощенное выражение.

Кстати, на этом примере становится понятно, что распределительно свойство работает на любом количестве слагаемых:

Под троеточием в данном случае подразумевается сколько угодно много слагаемых, главное, что они такого же вида, как первые и последние.

То есть первое троеточие обозначает слагаемые, состоящие из одного числа (буквы), второе же троеточие обозначает слагаемые вида «слагаемое из левой части выражения домноженное на t».

Как же в данном случае нам может помочь коэффициент?

В нашем примере мы выносили общий множитель. Им как раз и является коэффициент таких выражений, как ab, bc и cd.

В примере он уже был везде посчитан и нам ничего не приходилось умножать.

Упростим выражение (mathbf<30a+15bcdot2c+10dcdot3e>) :

В данном случае мы сначала посчитали в каждом слагаемом коэффициент (слагаемые в данном случае являются не просто числами, а выражениями).

А далее мы поняли, что этот коэффициент является общим множителем и мы его выносим, пользуясь распределительным свойством.

Это выражение можно упростить еще сильнее, вынося общий буквенный множитель. В данном случае в скобках у слагаемых общий множитель a и с, их и вынесем:

Здесь мы применили тот факт, что если у выражения не стоит коэффициент, то мы считаем, что его коэффициент равен единице.

Пройти тест и получить оценку можно после входа или регистрации

Источник статьи: http://ladle.ru/education/matematika/6class/koefficient

Числовой коэффициент — как найти его для буквенно-числовых и буквенных выражений

«Числовой коэффициент», или просто «коэффициент» — термин, который подразумевает под собой одно и то же математическое понятие. Усвоить, в чем смысл термина, очень просто, а найти числовой коэффициент на конкретном примере еще легче. Но для начала разберемся с официальным определением.

Что называют математическим числовым коэффициентом?

Согласно учебнику математики, если выражение состоит из одного числа и нескольких буквенных обозначений, умноженных друг на друга, то данное число и будет коэффициентом всего выражения. При этом количество букв не имеет значения — число может быть умножено на одну букву, на две или сразу на пять, оно все равно остается коэффициентом.

Например, рассмотрим следующие выражения:

  • 5*a. В этом примере присутствует одно число — «5» и одна буква «а», и они перемножены друг на друга. Соответственно, число «5» будет коэффициентом всего выражения.
  • 7*b*c. Здесь мы видим выражение из одного числа и сразу двух буквенных обозначений. Но поскольку перемножение между ними сохраняется, то число «7» также остается коэффициентом.
  • 6*9*a*b. В данном случае мы видим два буквенных обозначения — и целых два числа. Однако ситуации это не меняет, ведь принцип перемножения по-прежнему присутствует. Чтобы узнать коэффициент, нужно просто взять произведение «6» и «9», то есть «54», и переписать выражение как 54*a*b. Число «54» будет коэффициентом выражения.

Необходимо напомнить, что последнее правило распространяется и на выражения, где числовые обозначения стоят не друг рядом с другом, а разделены буквами. Например, 2*c*4*a — мы можем смело переписывать данное выражение в виде 2*4*с*а, потому что при умножении не имеет значения, в каком порядке стоят множители. И таким образом, коэффициент по-прежнему находится легко и просто — это будет число «8».

Не стоит теряться, если в задаче предлагается найти коэффициент для буквенного выражения без чисел — например, y*z. В данном случае всегда используется число «1» — поскольку выражение из примера можно записать в виде 1*y*z. Коэффициент находится в выражениях и с положительными, и с отрицательными множителями.

В каких случаях найти коэффициент для всего выражения нельзя?

Общий коэффициент не может быть найден, если предусмотрены другие действия, помимо умножения. Например, если взять 3*с + а, то число «3» будет коэффициентом лишь для одного из слагаемых, но никак не для всего выражения.

Источник статьи: http://infoogle.ru/chislovoj_koefficient_kak_najti_ego_dlya_bukvenno_chislovyx_i_bukvennyx_vyrazhenij.html


Adblock
detector