Меню

Что такое информационный вес одного символа и как его найти



Что такое информационный вес одного символа и как его найти

Алфавитный подход к измерению информации

Каждый символ некоторого сообщения имеет определённый информационный вес – несёт фиксированное количество информации.

Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита.

Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется 1 бит (bit)».

Информационный вес символа произвольного алфавита

• Алфавит любого языка можно заменить двоичным алфавитом.

• Для кодирования N символов произвольного алфавита требуется i -разрядный двоичный код

• Информационный вес символа = разрядность двоичного кода.

• Мощность алфавита и информационный вес символа алфавита: N =2 i

Информационный объем сообщения

Информационный объём I сообщения равен произведению количества K символов в сообщении на информационный вес i символа алфавита:

К — Число символов в символьном сообщении

I — Количество информации в символьном сообщении

Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита?

Решение: Составим краткую запись условия задачи.

Известно соотношение, связывающее величины

С учетом исходных данных: 8 = 2 i . Отсюда: i = 3.

Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт?

32 = 2 i , i = 5, I = 140 5 = 700 ( битов )

Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение?

i = 720/180 = 4 (бита); N = 2 4 = 16 (символов)

Источник статьи: http://skobelevserg.jimdofree.com/%D0%B8%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0-1/7-%D0%BA%D0%BB%D0%B0%D1%81%D1%81-%D1%84%D0%B3%D0%BE%D1%81/%D0%B8%D0%B7%D0%BC%D0%B5%D1%80%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B8%D0%BD%D1%84%D0%BE%D1%80%D0%BC%D0%B0%D1%86%D0%B8%D0%B8/

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, программирование, полезный материал и многое другое.

§ 1.6. Измерение информации

Информатика. 7 класса. Босова Л.Л. Оглавление

  • бит
  • информационный вес символа
  • информационный объём сообщения
  • единицы измерения информации

1.6.1. Алфавитный подход к измерению информации

Одно и то же сообщение может нести много информации для одного человека и не нести её совсем для другого человека. При таком подходе количество информации определить однозначно затруднительно.

Алфавитный подход позволяет измерить информационный объём сообщения, представленного на некотором языке (естественном или формальном), независимо от его содержания.

Для количественного выражения любой величины необходима, прежде всего, единица измерения. Измерение осуществляется путём сопоставления измеряемой величины с единицей измерения. Сколько раз единица измерения «укладывается» в измеряемой величине, таков и результат измерения.

При алфавитном подходе считается, что каждый символ некоторого сообщения имеет определённый информационный вес — несёт фиксированное количество информации. Все символы одного алфавита имеют один и тот же вес, зависящий от мощности алфавита. Информационный вес символа двоичного алфавита принят за минимальную единицу измерения информации и называется 1 бит.

Обратите внимание, что название единицы измерения информации «бит» (bit) происходит от английского словосочетания binary digit — «двоичная цифра».

За минимальную единицу измерения информации принят 1 бит. Считается, что таков информационный вес символа двоичного алфавита.

1.6.2. Информационный вес символа произвольного алфавита

Ранее мы выяснили, что алфавит любого естественного или формального языка можно заменить двоичным алфавитом. При этом мощность исходного алфавита N связана с разрядностью двоичного кода i, требуемой для кодирования всех символов исходного алфавита, соотношением: N = 2 i .

Разрядность двоичного кода принято считать информационным весом символа алфавита. Информационный вес символа алфавита выражается в битах.

Информационный вес символа алфавита i и мощность алфавита N связаны между собой соотношением: N = 2 i .

Задача 1. Алфавит племени Пульти содержит 8 символов. Каков информационный вес символа этого алфавита?

Решение. Составим краткую запись условия задачи.

Известно соотношение, связывающее величины i и N : N = 2 i .

С учётом исходных данных: 8 = 2 i . Отсюда: i = 3.

Полная запись решения в тетради может выглядеть так:

1.6.3. Информационный объём сообщения

Информационный объём сообщения (количество информации в сообщении), представленного символами естественного или формального языка, складывается из информационных весов составляющих его символов.

Информационный объём сообщения I равен произведению количества символов в сообщении К на информационный вес символа алфавита i;I = К • i.

Задача 2. Сообщение, записанное буквами 32-символьного алфавита, содержит 140 символов. Какое количество информации оно несёт?

Задача 3. Информационное сообщение объёмом 720 битов состоит из 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение?

1.6.4. Единицы измерения информации

В наше время подготовка текстов в основном осуществляется с помощью компьютеров. Можно говорить о «компьютерном алфавите», включающем следующие символы: строчные и прописные русские и латинские буквы, цифры, знаки препинания, знаки арифметических операций, скобки и др. Такой алфавит содержит 256 символов. Поскольку 256 = 2 8 , информационный вес каждого символа этого алфавита равен 8 битам. Величина, равная восьми битам, называется байтом. 1 байт — информационный вес символа алфавита мощностью 256.

1 байт = 8 битов

Бит и байт — «мелкие» единицы измерения. На практике для измерения информационных объёмов используются более крупные единицы:

1 килобайт = 1 Кб = 1024 байта = 2 10 байтов
1 мегабайт = 1 Мб = 1024 Кб = 2 10 Кб = 2 20 байтов
1 гигабайт = 1 Гб = 1024 Мб = 2 10 Мб = 2 20 Кб = 2 30 байтов
1 терабайт = 1 Тб = 1024 Гб = 2 10 Гб = 2 20 Мб = 2 30 Кб = 2 40 байтов

Задача 4. Информационное сообщение объёмом 4 Кбайта состоит из 4096 символов. Каков информационный вес символа используемого алфавита? Сколько символов содержит алфавит, с помощью которого записано это сообщение?

Ответ: 8 битов, 256 символов.

Задача 5. В велокроссе участвуют 128 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер цепочкой из нулей и единиц минимальной длины, одинаковой для каждого спортсмена. Каков будет информационный объём сообщения, записанного устройством после того, как промежуточный финиш пройдут 80 велосипедистов?

Решение. Номера 128 участников кодируются с помощью двоичного алфавита. Требуемая разрядность двоичного кода (длина цепочки) равна 7, так как 128 = 2 7 . Иначе говоря, зафиксированное устройством сообщение о том, что промежуточный финиш прошёл один велосипедист, несёт 7 битов информации. Когда промежуточный финиш пройдут 80 спортсменов, устройство запишет 80 • 7 = 560 битов, или 70 байтов информации.

Ответ: 70 байтов.

Самое главное.

При алфавитном подходе считается, что каждый символ некоторого сообщения имеет опредёленный информационный вес — несёт фиксированное количество информации.

1 бит — минимальная единица измерения информации.

Информационный вес символа алфавита i и мощность алфавита N связаны между собой соотношением: N = 2 i .

Информационный объём сообщения I равен произведению количества символов в сообщении К на информационный вес символа алфавита i: I = K•i.

Байт, килобайт, мегабайт, гигабайт, терабайт — единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (210) раза.

Вопросы и задания.

1.Ознакомтесь с материалами презентации к параграфу, содержащейся в электронном приложении к учебнику. Используйте эти материалы при подготовке ответов на вопросы и выполнении заданий.

Источник статьи: http://murnik.ru/1-6-izmerenie-informacii

Урок 5
Измерение информации (алфавитный подход). Единицы измерения информации

§4. Измерение информации

Основные темы параграфа:

— алфавитный подход к измерению информации;
— алфавит, мощность алфавита;
— информационный вес символа;
— информационный объем текста;
— единицы информации.

Изучаемые вопросы:

— Алфавит, мощность алфавита.
— 1 бит – информационный вес символа двоичного алфавита.
— N=2b – формула для определения информационного веса символа.
— Информационный объём текста
— Единицы измерения информации: байт, килобайт, мегабайт, гигабайт.

Материал для углубленного изучения темы «Измерение информации»

Изучаемые вопросы:

— Содержательный подход к измерению информации
— Неопределенность знаний
— Формула Хартли

Алфавитный подход к измерению информации

А теперь обсудим вопрос о том, как можно измерять информацию. Существует несколько подходов к измерению информации. Здесь мы рассмотрим только один, который называется алфавитным подходом * .

Алфавитный подход позволяет измерять информационный объем текста на некотором языке (естественном или формальном), не связанный с содержанием этого текста.

Вам хорошо известно, что существуют единицы измерения таких величин, как, например, расстояние, масса, время. Для расстояния — это метр, для массы — грамм, для времени — секунда. Измерение происходит путем сопоставления измеряемой величины с единицей измерения.
——————————
* О другом подходе к измерению информации см. в разделе 1.1 материала для углубленного изучения «Дополнение к главе I».

Сколько раз единица измерения укладывается в измеряемой величине, таков и результат измерения. Следовательно, и для измерения информации должна быть введена своя единица измерения.

Алфавит. Мощность алфавита

Под алфавитом некоторого языка мы будем понимать набор букв, знаков препинания, цифр, скобок и других символов, используемых в тексте. В алфавит также следует включить и пробел, т. е. пропуск между словами.

Полное число символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54: 33 буквы + 10 цифр + 11 знаков препинания, скобки, пробел.

Информационный вес символа

При алфавитном подходе считается, что каждый символ текста имеет определенный информационный вес. Информационный вес символа зависит от мощности алфавита. А каким может быть наименьшее число символов в алфавите? Оно равно двум! Скоро вы узнаете, что такой алфавит используется в компьютере. Он содержит всего 2 символа, которые обозначаются цифрами 0 и 1. Его называют двоичным алфавитом. Изучая устройство и работу компьютера, вы узнаете, как с помощью всего двух символов можно представить любую информацию.

Информационный вес символа двоичного алфавита принят за единицу информации и называется 1 бит.

С увеличением мощности алфавита увеличивается информационный вес символов этого алфавита. Так один символ из четырехсимвольного алфавита (N = 4) «весит» 2 бита. Объяснение этому можно дать следующее: все символы такого алфавита можно закодировать всеми возможными комбинациями из двух цифр двоичного алфавита. Комбинацию из нескольких (двух, трех и т. д.) знаков двоичного алфавита назовем двоичным кодом.

Используя три двоичные цифры, можно составить 8 различных комбинаций.

Следовательно, если мощность алфавита равна 8, то информационный вес одного символа равен 3 битам.

Четырехзначными двоичными кодами могут быть закодированы все символы 16-символьного алфавита, и т. д.

Найдем зависимость между мощностью алфавита (N) и количеством знаков в коде (b) — разрядностью двоичного кода.

Заметим, что 2 = 2 1 , 4 = 2 2 , 8 = 2 3 , 16 = 2 4 .

В общем виде это записывается следующим образом:

Разрядность двоичного кода — это и есть информационный вес символа.

Если число N не равно целой степени двойки, то для определения информационного веса символа поступают следующим образом: берется ближайшее к N, большее N значение М, равное двойке в целой степени: N b . Получаемое отсюда значение b принимается за информационный вес символа. Например, если N = 12, то М = 16 = 2 4 . Отсюда информационный вес символа из алфавита мощностью 12 равен 4 битам. Иначе говоря, 12 символов алфавита кодируются 4-разрядными двоичными кодами.

Информационный объем текста. Единицы информации

Информационный объем текста складывается из информационных весов составляющих его символов. Например, следующий текст, записанный с помощью двоичного алфавита:

1101001011000101110010101101000111010010

содержит 40 символов, следовательно, его информационный объем равен 40 битам.

Сегодня для подготовки текстовых документов чаще всего применяются компьютеры. Алфавит, из которого составляется такой «компьютерный текст», содержит 256 символов. В алфавит такого размера можно поместить все практически необходимые символы: строчные и прописные латинские и русские буквы, цифры, знаки арифметических операций, всевозможные скобки, знаки препинания и пр.

Поскольку 256 = 2 8 , то один символ компьютерного алфавита «весит» 8 битов. Величина, равная восьми битам, называется байтом.

1 байт = 8 битов.

Легко подсчитать информационный объем текста, если известно, что информационный вес одного символа равен 1 байту. Надо просто сосчитать число символов в тексте. Полученное значение и будет информационным объемом текста, выраженным в байтах.

Например, небольшая книжка, подготовленная с помощью компьютера, содержит 150 страниц. На каждой странице 40 строк, в каждой строке 60 символов (включая пробелы между словами). Значит, страница содержит 40 х 60 = 2400 байтов информации. Для вычисления информационного объема всей книги нужно полученную величину умножить на число страниц:

2400 байтов * 150 = 360 000 байтов.

Уже на таком примере видно, что байт — «мелкая» единица. А представьте, что нужно, например, измерить информационный объем целой библиотеки. В байтах это окажется громадным числом!

Для измерения больших информационных объемов используются более крупные единицы:

1 килобайт = 1 Кб = 2 10 байтов = 1024 байта

1 мегабайт = 1 Мб = 2 10 Кб = 1024 Кб

1 гигабайт = 1 Гб = 2 10 Мб = 1024 Мб

1 терабайт = 1 Тб = 2 10 Гб = 1024 Гб

Следовательно, информационный объем вышеупомянутой книги равен приблизительно 360 килобайтам. А если посчитать точнее, то получится:

360 000 : 1024 = 351,5625 Кб.

351,5625 : 1024 = 0,34332275 Мб.

В заключение еще раз обратим внимание на важное свойство рассмотренного здесь алфавитного подхода. При его использовании содержательная сторона текста в учет не берется. Текст, состоящий из бессмысленного сочетания символов, будет иметь ненулевой информационный объем.

Коротко о главном

Алфавитный подход — это способ измерения информационного объема текста, не связанного с его содержанием.

Алфавит — это вся совокупность символов, используемых в некотором языке для представления информации. Мощность алфавита — это число символов в нем.

1 бит — информационный вес одного символа двухсимвольного алфавита (N = 2).

Информационный вес символа (разрядность двоичного кода) (b) и мощность алфавита (N) связаны формулой: N = 2 b .

Если N не равно двойке в целой степени, то находится большее N, ближайшее к N целое число М = 2 b (b — целое), и из этого равенства определяется b — информационный вес символа.

Информационный объем текста равен сумме информационных весов всех символов, составляющих текст.

1 байт — информационный вес символа из алфавита мощностью 2 8 = 256 символов. 1 байт = 8 битов.

Байт, килобайт, мегабайт, гигабайт, терабайт — единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (2 10 ) раза.

Вопросы и задания

2. Что такое мощность алфавита?

3. Как определяется информационный объем текста при использовании алфавитного подхода?

4. Текст составлен с использованием алфавита мощностью 64 символа и содержит 100 символов. Каков информационный объем текста?

5. Что такое байт, килобайт, мегабайт, гигабайт, терабайт?

6. Информационный объем текста, подготовленного с помощью компьютера, равен 3,5 Кб. Сколько символов содержит этот текст?

7. Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 32 символа, второй — мощностью 64 символа. Во сколько раз различаются информационные объемы этих текстов?

Электронное приложение к уроку

Вернуться к материалам урока
Презентации, плакаты, текстовые файлы Ресурсы ЕК ЦОР
Видео к уроку

Cкачать материалы урока

Источник статьи: http://xn—-7sbbfb7a7aej.xn--p1ai/informatika_07_sim/informatika_materialy_zanytii_07_05.html


Adblock
detector