Меню

Что такое гидравлическое сопротивление и как его найти



Гидравлическое сопротивление

Гидравлическое сопротивление или гидравлические потери – это суммарные потери при движении жидкости по водопроводящим каналам. Их условно можно разделить на две категории:

Потери трения – возникают при движении жидкости в трубах, каналах или проточной части насоса.

Потери на вихреобразование – возникают при обтекании потоком жидкости различных элементов. Например, внезапное расширение трубы, внезапное сужение трубы, поворот, клапан и т. п. Такие потери принято называть местными гидравлическими сопротивлениями.

Содержание статьи

Коэффициент гидравлического сопротивления

Гидравлические потери выражают либо в потерях напора Δh в линейных единицах столба среды, либо в единицах давления ΔP:

где ρ — плотность среды, g — ускорение свободного падения.

В производственной практике перемещение жидкости в потоках связано с необходимостью преодолеть гидравлическое сопротивление трубы по длине потока, а также различные местные сопротивления:
Поворотов
Диафрагм
Задвижек
Вентилей
Кранов
Различных ответвлений и тому подобного

На преодоление местных сопротивлений затрачивается определенная часть энергии потока, которую часто называют потерей напора на местные сопротивления. Обычно эти потери выражают в долях скоростного напора, соответствующего средней скорости жидкости в трубопроводе до или после местного сопротивления.

Аналитически потери напора на местные гидравлические сопротивления выражаются в виде.

где ξ – коэффициент местного сопротивления (обычно определяется опытным путем).

Данные о значении коэффициентов различных местных сопротивлений приводятся в соответствующих справочниках, учебниках и различных пособиях по гидравлике в виде отдельных значений коэффициента гидравлического сопротивления, таблиц, эмпирических формул, диаграмм и т.д.

Исследование потерь энергии (потери напора насоса), обусловленных различными местными сопротивлениями, ведутся уже более ста лет. В результате экспериментальных исследований, проведенных в России и за рубежом в различное время, получено огромное количество данных, относящихся к разнообразнейшим местным сопротивлениям для конкретных задач. Что же касается теоретических исследований, то им пока поддаются только некоторые местные сопротивления.

В этой статье будут рассмотрены некоторые характерные местные сопротивления, часто встречающиеся на практике.

Местные гидравлические сопротивления

Как уже было написано выше, потери напора во многих случаях определяются опытным путем. При этом любое местное сопротивление похоже на сопротивление при внезапном расширении струи. Для этого имеется достаточно оснований, если учесть, что поведение потока в момент преодоления им любого местного сопротивления связано с расширением или сужением сечения.

Гидравлические потери на внезапное сужение трубы

Сопротивление при внезапном сужении трубы сопровождается образованием в месте сужения водоворотной области и уменьшения струи до размеров меньших, чем сечение малой трубы. Пройдя участок сужения, струя расширяется до размеров внутреннего сечения трубопровода. Значение коэффициента местного сопротивления при внезапном сужении трубы можно определить по формуле.

Значение коэффициента ξвн. суж от значения отношения (F2/F1)) можно найти в соответствующем справочнике по гидравлике.

Гидравлические потери при изменении направления трубопровода под некоторым углом

В этом случае вначале происходит сжатие, а затем расширение струи вследствие того, что в месте поворота поток по инерции как бы отжимается от стенок трубопровода. Коэффициент местного сопротивления в этом случае определяется по справочным таблицам или по формуле

ξ поворот = 0,946sin(α/2) + 2.047sin(α/2) 2

где α – угол поворота трубопровода.

Местные гидравлические сопротивления при входе в трубу

В частном случае вход в трубу может иметь острую или закругленную кромку входа. Труба, в которую входит жидкость, может быть расположена под некоторым углом α к горизонтали. Наконец, в сечении входа может стоять диафрагма, сужающая сечение. Но для всех этих случаев характерно начальное сжатие струи, а затем её расширение. Таким образом и местное сопротивление при входе в трубу может быть сведено к внезапному расширению струи.

Если жидкость входит в цилиндрическую трубу с острой кромкой входа и труба наклонена к горизонту под углом α, то величину коэффициента местного сопротивления можно определить по формуле Вейсбаха:

ξвх = 0,505 + 0,303sin α + 0,223 sin α 2

Местные гидравлические сопротивления задвижки

На практике часто встречается задача расчета местных сопротивлений, создаваемых запорной арматурой, например, задвижками, вентилями, дросселями, кранами, клапанами и т.д. В этих случаях проточная часть, образуемая разными запорными приспособлениями, может иметь совершенно различные геометрические формы, но гидравлическая сущность течения при преодолении этих сопротивлений одинакова.

Гидравлическое сопротивление полностью открытой запорной арматуры равно

Величины коэффициентов местных гидравлических сопротивлений для каждого вида запорной арматуры можно определить по справочникам.

Гидравлические потери диафрагмы

Процессы, происходящие в запорных устройствах, во многом похожи на процессы при истечении жидкости через диафрагмы, установленные в трубе. В этом случае также происходит сужение струи и последующее её расширение. Степень сужения и расширения струи зависит от ряда условий:
режима движения жидкости
отношения диаметров отверстия диафрагмы и трубы
конструктивных особенностей диафрагмы.

Для диафрагмы с острыми краями:

Местные гидравлические сопротивления при входе струи под уровень жидкости

Преодоление местного сопротивления при входе струи под уровень жидкости в достаточно большой резервуар или в среду, не заполненную жидкостью, связано с потерей кинетической энергии. Следовательно, коэффициент сопротивления в этом случае равен единице.

Видео о гидравлическом сопротивлении

На преодоление гидравлических потерь затрачивается работа различных устройств (насосов и гидравлических машин)

Для снижения влияния гидравлических потерь рекомендуется в конструкции трассы избегать использования узлов способствующих резким изменениям направления потока и стараться применять в конструкции тела обтекаемой формы.

Даже применяя абсолютно гладкие трубы приходится сталкиваться с потерями: при ламинарном режиме течения(по Рейнольдсу) шероховатость стенок не оказывает большого влияния, но при переходе к турбулентному режиму течения как правило возрастает и гидравлическое сопротивление трубы.

Источник статьи: http://www.nektonnasos.ru/article/gidravlika/gidravlicheskoe-soprotivlenie/

Что такое гидравлическое сопротивление и как его найти

Расчет гидравлического сопротивления в системе отопления.

Ниже будут реальные задачи.

Вы, конечно, можете воспользоваться специальными программами, для этого, но пользоваться программами весьма затруднительно, если вы не знаете основ гидравлики. Что касается некоторых программ, то в них не разжевываются формулы, по которым происходит гидравлический расчет. В некоторых программах не описываются некоторые особенности по разветвлению трубопроводов, и нахождению сопротивления в сложных схемах. И весьма затруднительно считать, это требует дополнительного образования и научно-технического подхода.

В этой статье я раскрываю для Вас абсолютный расчет (алгоритм) по нахождению гидравлического сопротивления.

Существуют местные гидравлические сопротивления, которые создают различные элементы систем, например: Шаровый кран, различные повороты, заужения или расширения, трайники и тому подобное. Казалось бы, с поворотами и сужениями понятно, а расширения в трубах тоже создают гидравлические сопротивления.

Протяженность прямой трубы тоже создает сопротивление движению. Вроде прямая труба без сужений, а все равно создает сопротивление движению. И чем длиннее труба, тем больше сопротивление в ней.

Эти сопротивления, хоть и отличаются, но для системы отопления они просто создают сопротивление движению, а вот формулы по нахождению этого сопротивления отличаются между собой.

Для системы отопления не важно, какое это сопротивление местное или по длине трубопровода. Это сопротивление одинаково действует на движение воды в трубопроводе.

Сопротивление будем измерять в метрах водяного столба. Также сопротивление можно обзывать как потеря напора в трубопроводе. Но только однозначно это сопротивление измеряется в метрах водяного столба, либо переводится в другие единицы измерения, например: Bar, атмосфера, Па (Паскаль) и тому подобное.

Что такое сопротивление в трубопроводе?

Чтобы понять это рассмотрим участок трубы.

Манометры, установленные на подающей и обратной ветке трубопроводов, показывают давление на подающей трубе и на обратной трубе. Разница между манометрами показывает перепад давления между двумя точками до насоса и после насоса.

Для примера предположим, что на подающем трубопроводе (справа) стрелка манометра указывает на 2,3 Bar, а на обратном трубопроводе (слева) стрелка манометра показывает 0,9 Bar. Это означает, что перепад давления составляет:

Величину Bar переводим в метры водяного столба, оно составляет 14 метров.

Очень важно понять, что перепад давления, напор насоса и сопротивление в трубе — это величины, которые измеряются давлением (Метрами водяного столба, Bar, Па и т.д.)

В данном случае, как указано на изображение с манометрами, разница на манометрах показывает не только перепад давления между двумя точками, но и напор насоса в данном конкретном времени, а также показывает сопротивление в трубопроводе со всеми элементами, встречающимися на пути трубопровода.

Другими словами, сопротивление системы отопления это и есть перепад давления в пути трубопровода. Насос создает этот перепад давления.

Устанавливая манометры на две разные точки, можно будет находить потери напора в разных точках трубопровода, на которые Вы установите манометры.

На стадии проектирования нет возможности создавать похожие развязки и устанавливать на них манометры, а если имеется такая возможность, то она очень затратная. Для точного расчета перепада давления манометры должны быть установлены на одинаковые трубопроводы, то есть исключить в них разность диаметров и исключить разность направление движения жидкости. Также манометры не должны быть на разных высотах от уровня горизонта.

Ученые приготовили для нас полезные формулы, которые помогают находить потери напора теоретическим способом, не прибегая к практическим проверкам.

Разберем сопротивление водяного теплого пола. Смотри изображение.

Труба металлопластиковая 16мм, внутренний диаметр 12мм.
длина трубы 40 м.
По условию обогрева, расход в контуре должен быть 1,6 л/мин
Поворотов 90 градусов соответствует: 30 шт.
Температура теплоносителя (воды): 40 градусов Цельсия.

Для решения данной задачи были использованы следующие материалы:

Первым делом находим скорость течения в трубе.

Q= 1,6 л/мин = 0,096 м 3 /ч = 0,000026666 м 3 /сек.

V = (4•0,000026666)/(3,14•0,012•0,012)=0,24 м/с

ν=0,65•10 -6 =0,00000065. Взято из таблицы. Для воды при температуре 40°С.

Δэ=0,01мм=0,00001м. Взято из таблицы, для металлопластиковой трубы.

Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения.

У меня попадает на первую область при условии

4000 0,25 = 0,3164/4430 0,25 = 0,039

h=λ•(L•V 2 )/(D•2•g)= 0,039•(40•0,24•0,24)/(0,012•2•9,81)= 0,38 м.

Находим сопротивление на поворотах

h=ζ•(V 2 )/2•9,81=(0,31•0,24 2 )/( 2•9,81)= 0,00091 м.

Данное число умножаем на количество поворотов 90 градусов

В итоге полное сопротивление уложенной трубы составляет: 0,38+0,0273=0,4 м.

Теория о местном сопротивление

Хочу подметить процесс вычисления местных сопротивлений на поворотах и различных расширений и сужений в трубопроводе.

Потеря напора на местном сопротивление находится по этой формуле:

h-потеря напора здесь она измеряется в метрах.
ζ-Это коэффициент сопротивления, он будет находиться дополнительными формулами, о которых напишу ниже.
V — скорость потока жидкости. Измеряется [Метр/секунда].
g — ускорение свободного падения равен 9,81 м/с 2

В этой формуле меняется только коэффициент местного сопротивления, коэффициент местного сопротивления для каждого элемента свой.

Подробнее о нахождение коэффициента

Обычный отвод в 90 градусов.

Коэффициент местного сопротивления составляет примерно единице.

Постепенный или плавный поворот трубы

Постепенный поворот трубы (отвод или закруглённое колено) значительно уменьшает гидравлическое сопротивление. Величина потерь существенно зависит от отношения R/d и угла α.

Коэффициент местного сопротивления для плавного поворота можно определить по экспериментальным формулам. Для поворота под углом 90° и R/d>1 он равен:

для угла поворота более 100°

Для угла поворота менее 70°

Для теплого пола, поворот трубы в 90° составляет: 0,31-0,51

где n степень сужения трубы.

ω1, ω2 — сечение внутреннего прохода трубы.

В формулу вставляется скорость течения в трубе с малым диаметром.

В формулу вставляется скорость течения в трубе с малым диаметром.

Также существуют и плавные расширения и сужения, но в них сопротивление потоку уже значительно ниже.

Внезапное расширение и сужение встречается очень часто, например, при входе в радиатор получается внезапное расширение, а при уходе жидкости из радиатора внезапное сужение. Также внезапное расширение и сужение наблюдается в гидрострелках и коллекторах.

Более детально о разветвлениях поговорим в других статьях.

Находим сопротивление для радиаторной системы отопления. Смотри изображение.

Труба металлопластиковая 16мм, внутренний диаметр 12мм.
Длина трубы 5 м.
По условию обогрева, расход в контуре радиатора должен быть 2 л/мин
Плавных поворотов 90 градусов соответствует: 2 шт.
Отводов 90 градусов: 2шт.
Внезапное расширение на входе в радиатор: 1шт.
Внезапное сужение на выходе из радиатора: 1шт.
Температура теплоносителя (воды): 60 градусов Цельсия.

Для начала посчитаем сопротивление по длине трубопровода.

Первым делом находим скорость течения в трубе.

Q= 2 л/мин = 0,096 м 3 /ч = 0,000033333 м 3 /сек.

V = (4•0,000033333)/(3,14•0,012•0,012)=0,29 м/с

ν=0,65•10 -6 =0,000000475. Взято из таблицы. Для воды при температуре 60°С.

Δэ=0,01мм=0,00001м. Взято из таблицы, для металлопластиковой трубы.

Далее сверяемся по таблице, где находим формулу по нахождению коэффициента гидравлического трения. У меня попадает на первую область при условии

4000 0,25 = 0,3164/7326 0,25 = 0,034

h=λ•(L•V 2 )/(D•2•g)= 0,034•(5•0,29•0,29)/(0,012•2•9,81)= 0,06 м.

Находим сопротивление на плавном повороте

h=ζ•(V 2 )/2•9,81=(0,31•0,292)/( 2•9,81)= 0,0013 м.

Данное число умножаем на количество поворотов 90 градусов

Находим сопротивление на коленном (прямом 90°) повороте

Там, где имеется сужение и расширение — это тоже будет являться гидравлическим сопротивлением. Я не стану считать сужение и расширение на металлопластиковых фитингах, так как далее мы все равно затронем эту тему. Потом сами посчитаете.

h=ζ•(V 2 )/2•9,81=(2•0,292)/( 2•9,81)= 0,0086 м.

Данное число умножаем на количество поворотов 90 градусов

Находим сопротивление на входе в радиатор.

Вход в радиатор — это ни что иное как расширение трубопровода, поэтому коэффициент местного сопротивления будем находить для трубы идущий на резкое расширение.

Минимальный диаметр примем за 15мм, а максимальный диаметр у радиатора примем за 25мм.

Находим площадь сечения двух разных диаметров:

ω1 = π • D 2 /4 = 3.14 • 15 2 / 4 = 177 мм 2

ω2 = π • D 2 /4 = 3.14 • 25 2 / 4 = 491 мм 2

h=ζ•(V 2 )/2•9,81=(0,41•0,19 2 )/( 2•9,81)= 0,00075 м.

Находим сопротивление на выходе из радиатора.

Выход из радиатора — это ни что иное как сужение трубопровода, поэтому коэффициент местного сопротивления будем находить для трубы идущий на резкое сужение.

ω2 = π • D 2 /4 = 3.14 • 15 2 / 4 = 177 мм 2

ω1 = π • D 2 /4 = 3.14 • 25 2 / 4 = 491 мм 2

h=ζ•(V 2 )/2•9,81=(0,32•0,19 2 )/( 2•9,81)= 0,00059 м.

Далее все потери складываются, если эти потери идут последовательно друг для друга.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Источник статьи: http://infobos.ru/str/749.html


Adblock
detector