Меню

Что если дискриминант равен 0 то как найти корень



Узнать ещё

Знание — сила. Познавательная информация

Дискриминант 0

Эта подсказка поможет легко запомнить формулу корней квадратного уравнения (точнее, корня, ведь в этом случае он один), если дискриминант равен 0.

Учить эту формулу не нужно!

Итак, в процессе решения квадратного уравнения

находим дискриминант квадратного уравнения по формуле:

Если дискриминант больше нуля (D>0), то квадратное уравнение имеет два корня:

Достаточно запомнить только одну эту формулу, и использовать ее же, если дискриминант равен 0. Ведь квадратный корень из нуля равен нулю, а от прибавления или вычитания нуля число не изменится:

Таким образом, если дискриминант равен 0 (D=0), корень квадратного уравнения равен

Источник статьи: http://www.uznateshe.ru/diskriminant-0/

Решение квадратных уравнений

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

— это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда — это просто число D = b 2 − 4 ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D D = 0, есть ровно один корень;
  2. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8 x + 12 = 0;
  2. 5 x 2 + 3 x + 7 = 0;
  3. x 2 − 6 x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D x 2 − 2 x − 3 = 0;

  • 15 − 2 x − x 2 = 0;
  • x 2 + 12 x + 36 = 0.
  • Первое уравнение:
    x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2) 2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Второе уравнение:
    15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2) 2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    Наконец, третье уравнение:
    x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 12 2 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax 2 + bx + c = 0 называется , если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (− c / a ) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (− c / a ) c / a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

    5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

    Источник статьи: http://www.berdov.com/docs/equation/quadratic_equations/

    Квадратное уравнение это уравнение которое выглядит как ax 2 + dx + c = 0 . В нем значение а,в и с любые числа, при этом а не равно нулю.

    Все квадратные уравнения разделяются на несколько видов, а именно:

    Уравнения в которых только один корень.
    -Уравнения с двумя разными корнями.
    -Уравнения в которых корней нет совсем.

    Это и различает линейные уравнения в которых корень всегда единый, от квадратных. Для того что бы понять какое количество корней в выражении и нужен Дискриминант квадратного уравнения .

    Допустим наше уравнение ax 2 + dx + c =0. Значит дискриминант квадратного уравнения

    И это нужно запомнить навсегда. С помощью этого уравнения мы и определяем количество корней в квадратном уравнении. И делаем мы это следующим образом:

    Когда D меньше нуля, в уравнении нет корней.
    — Когда D равно нулю, имеется только один корень.
    — Когда D больше нуля, соответственно, в уравнении два корня.
    Запомните что дискриминант показывает сколько корней в уравнении, не меняя знаков.

    Рассмотрим для наглядности:

    Нужно выяснить какое количество корней в данном квадратном уравнении.

    1) х 2 — 8х + 12 = 0
    2)5х 2 + 3х + 7 = 0
    3) х 2 -6х + 9 = 0

    Вписываем значения в первое уравнение, находим дискриминант.
    а = 1, b = -8, c = 12
    D = (-8) 2 — 4 * 1 * 12 = 64 — 48 = 16
    Дискриминант со знаком плюс, значит в данном равенстве два корня.

    Делаем тоже самое со вторым уравнением
    a = 1, b = 3, c = 7
    D = 3 2 — 4 * 5 * 7 = 9 — 140 = — 131
    Значение минусовое, значит корней в данном равенстве нет.

    Следующее уравнение разложим по аналогии.
    а = 1, b = -6, с = 9
    D = (-6) 2 — 4 * 1 * 9 = 36 — 36 = 0
    как следствие имеем один корень в уравнении.

    Важно что в каждом уравнении мы выписывали коэффициенты. Конечно это не много длительный процесс, но это помогло нам не запутаться и предотвратило появление ошибок. Если очень часто решать подобные уравнения, то вычисления сможете производить мысленно и заранее знать сколько у уравнения корней.

    Рассмотрим еще один пример:

    1) х 2 — 2х — 3 = 0
    2) 15 — 2х — х 2 = 0
    3) х 2 + 12х + 36 = 0

    Раскладываем первое
    а = 1, b = -2, с = -3
    D =(-2) 2 — 4 * 1 * (-3) = 16, что больше нуля, значит два корня, выведем их
    х 1 = 2+?16/2 * 1 = 3, х 2 = 2-?16/2 * 1 = -1.

    Раскладываем второе
    а = -1, b = -2, с = 15
    D = (-2) 2 — 4 * 4 * (-1) * 15 = 64, что больше нуля и так же имеет два корня. Выведем их:
    х 1 = 2+?64/2 * (-1) = -5, х 2 = 2-?64/2 *(-1) = 3.

    Раскладываем третье
    а = 1, b = 12, с = 36
    D = 12 2 — 4 * 1 * 36 =0, что равно нулю и имеет один корень
    х = -12 + ?0/2 * 1 = -6.
    Решать данные уравнения не сложно.

    Если нам дано неполное квадратное уравнение. Такое как

    Данные уравнения отличаются от тех что были выше, так как оно не полное, в нем нет третьего значения. Но не смотря на это оно проще чем полное квадратное уравнение и в нем дискриминант искать не нужно.

    Что делать когда срочно нужна дипломная работа или реферат, а времени на его написание нет? Всё это и многое другое можно заказать на сайте Deeplom.by (http://deeplom.by/) и получить высший балл.

    Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

    Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

    Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

    1. Не имеют корней;
    2. Имеют ровно один корень;
    3. Имеют два различных корня.

    В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

    Дискриминант

    Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

    Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

    1. Если D 0, корней будет два.

    Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

    Задача. Сколько корней имеют квадратные уравнения:

    1. x 2 − 8x + 12 = 0;
    2. 5x 2 + 3x + 7 = 0;
    3. x 2 − 6x + 9 = 0.

    Выпишем коэффициенты для первого уравнения и найдем дискриминант:
    a = 1, b = −8, c = 12;
    D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

    Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
    a = 5; b = 3; c = 7;
    D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

    Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
    a = 1; b = −6; c = 9;
    D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

    Дискриминант равен нулю — корень будет один.

    Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

    Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

    Корни квадратного уравнения

    Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

    Основная формула корней квадратного уравнения

    Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D 0 ⇒ уравнение имеет два корня. Найдем их:

    Второе уравнение:
    15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2) 2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    Наконец, третье уравнение:
    x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 12 2 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (−c /a ) Друзья, казалось бы, что может быть в математике проще, чем решение такого уравнения. Но что-то мне подсказывало, что с ним у многих есть проблемы. Решил посмотреть сколько показов по запросу в месяц выдаёт Яндекс. Вот что получилось, посмотрите:

    Что это значит? Это значит то, что около 70000 человек в месяц ищут данную информацию, при чём это лето, а что будет среди учебного года — запросов будет в два раза больше. Это и неудивительно, ведь те ребята и девчата, которые давно окончили школу и готовятся к ЕГЭ, ищут эту информацию, также и школьники стремятся освежить её в памяти.

    Несмотря на то, что есть масса сайтов, где рассказывается как решать это уравнение, я решил тоже внести свою лепту и опубликовать материал. Во-первых, хочется чтобы по данному запросу и на мой сайт приходили посетители; во-вторых, в других статьях, когда зайдёт речь «КУ» буду давать ссылку на эту статью; в-третьих, расскажу вам о его решении немного больше, чем обычно излагается на других сайтах. Приступим! Содержание статьи:

    Квадратное уравнение – это уравнение вида:

    где коэффициенты a, b и с произвольные числа, при чём a≠0.

    В школьном курсе материал дают в следующем виде – условно делается разделение уравнений на три класса:

    2. *Имеют только один корень.

    3. Не имеют корней. Здесь стоит особо отметить, что не имеют действительных корней

    Как вычисляются корни? Просто!

    Вычисляем дискриминант. Под этим «страшным» словом лежит вполне простая формула:

    Формулы корней имеют следующий вид:

    *Эти формулы нужно знать наизусть.

    Можно сразу записывать и решать:

    1. Если D > 0, то уравнение имеет два корня.

    2. Если D = 0, то уравнение имеет один корень.

    3. Если D где х и у — переменные

    a, b, с – заданные числа, при чём a ≠ 0

    Графиком является парабола:

    То есть, получается, что решая квадратное уравнение при «у» равном нулю мы находим точки пересечения параболы с осью ох. Этих точек может быть две (дискриминант положительный), одна (дискриминант равен нулю) и ни одной (дискриминант отрицательный). Подробно о квадратичной функции можете посмотреть статью у Инны Фельдман.

    D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

    *Можно было сразу же левую и правую часть уравнения разделить на 2, то есть упростить его. Вычисления будут проще.

    D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

    Получили, что х 1 = 11 и х 2 = 11

    В ответе допустимо записать х = 11.

    Пример 3: Решить x 2 –8x+72 = 0

    D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

    Дискриминант отрицательный, решения в действительных числах нет.

    Дискриминант отрицательный. Решение есть!

    Здесь речь пойдёт о решении уравнения в случае когда получается отрицательный дискриминант. Вы что-нибудь знаете о комплексных числах? Не буду здесь подробно рассказывать о том, почему и откуда они возникли и в чём их конкретная роль и необходимость в математике, это тема для большой отдельной статьи.

    Понятие комплексного числа.

    Комплексным числом z называется число вида

    где a и b – действительные числа, i – так называемая мнимая единица.

    a+bi – это ЕДИНОЕ ЧИСЛО, а не сложение.

    Мнимая единица равна корню из минус единицы:

    Теперь рассмотрим уравнение:

    Получили два сопряжённых корня.

    Неполное квадратное уравнение.

    Рассмотрим частные случаи, это когда коэффициент «b» или «с» равен нулю (или оба равны нулю). Они решаются легко без всяких дискриминантов.

    Случай 1. Коэффициент b = 0.

    Уравнение приобретает вид:

    4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

    Случай 2. Коэффициент с = 0.

    Уравнение приобретает вид:

    Преобразуем, раскладываем на множители:

    *Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.

    9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

    Случай 3. Коэффициенты b = 0 и c = 0.

    Здесь понятно, что решением уравнения всегда будет х = 0.

    Полезные свойства и закономерности коэффициентов.

    Есть свойства, которые позволяют решить уравнения с большими коэффициентами.

    — если для коэффициентов уравнения а x 2 + bx + c =0 выполняется равенство

    Данные свойства помогают решить определённого вида уравнения.

    Сумма коэффициентов равна 5001+( 4995)+( 6) = 0, значит

    Выполняется равенство a + с = b , значит

    1. Если в уравнении ax 2 + bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

    аx 2 + (а 2 +1)∙х+ а= 0 = > х 1 = –а х 2 = –1/a.

    Пример. Рассмотрим уравнение 6х 2 +37х+6 = 0.

    2. Если в уравнении ax 2 – bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

    аx 2 – (а 2 +1)∙х+ а= 0 = > х 1 = а х 2 = 1/a.

    Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

    3. Если в уравнении ax 2 + bx – c = 0 коэффициент «b» равен (a 2 – 1), а коэффициент «c» численно равен коэффициенту «a» , то его корни равны

    аx 2 + (а 2 –1)∙х – а= 0 = > х 1 = – а х 2 = 1/a.

    Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

    4. Если в уравнении ax 2 – bx – c = 0 коэффициент «b» равен (а 2 – 1), а коэффициент с численно равен коэффициенту «а», то его корни равны

    аx 2 – (а 2 –1)∙х – а= 0 = > х 1 = а х 2 = – 1/a.

    Пример. Рассмотрим уравнение 10х 2 – 99х –10 = 0.

    Теорема Виета называется по имени знаменитого французского математика Франсуа Виета. Используя теорему Виета, можно выразить сумму и произведение корней произвольного КУ через его коэффициенты.

    В сумме число 14 дают только 5 и 9. Это корни. При определённом навыке, используя представленную теорему, многие квадратные уравнения вы сможете решать сходу устно.

    Теорема Виета, кроме того. удобна тем, что после решения квадратного уравнения обычным способом (через дискриминант) полученные корни можно проверять. Рекомендую это делать всегда.

    При этом способе коэффициент «а» умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

    Если а ± b+c ≠ 0, то используется прием переброски, например:

    2х 2 – 11х+ 5 = 0 (1) => х 2 – 11х+ 10 = 0 (2)

    По теореме Виета в уравнении (2) легко определить, что х 1 = 10 х 2 = 1

    Полученные корни уравнения необходимо разделить на 2 (так как от х 2 «перебрасывали» двойку), получим

    Каково обоснование? Посмотрите что происходит.

    Дискриминанты уравнений (1) и (2) равны:

    Если посмотреть на корни уравнений, то получаются только различные знаменатели, и результат зависит именно от коэффициента при х 2:

    У второго (изменённого) корни получаются в 2 раза больше.

    Потому результат и делим на 2.

    *Если будем перебрасывать тройку, то результат разделим на 3 и т.д.

    О его важности скажу кратко – ВЫ ДОЛЖНЫ УМЕТЬ РЕШАТЬ быстро и не задумываясь, формулы корней и дискриминанта необходимо знать наизусть. Очень многие задачи, входящие в состав заданий ЕГЭ, сводятся к решению квадратного уравнения (геометрические в том числе).

    1. Форма записи уравнения может быть «неявной». Например, возможна такая запись:

    15+ 9x 2 — 45x = 0 или 15х+42+9x 2 — 45x=0 или 15 -5x+10x 2 = 0.

    Вам необходимо привести его к стандартному виду (чтобы не запутаться при решении).

    2. Помните, что х это неизвестная величина и она может быть обозначена любой другой буквой – t, q, p, h и прочими.

    Важно! В корнях четной кратности функция знак не меняет.

    Обратите внимание! Любое нелинейное неравенство школьного курса алгебры нужно решать с помощью метода интервалов.

    Предлагаю вам подробный алгоритм решения неравенств методом интервалов , следуя которому вы сможете избежать ошибок прирешении нелинейных неравенств .

    Решение квадратных уравнений с отрицательными дискриминантами

    Таким образом, существуют по крайней мере два значения корня квадратного из — 1, а именно i и — i . Но, может быть, есть еще какие-нибудь комплексные числа, квадраты которых равны — 1?

    Чтобы выяснить этот вопрос, предположим, что квадрат комплексного числа а + bi равен — 1. Тогда

    Два комплексных числа равны тогда и только тогда, когда равны их действительные части и коэффициенты при мнимых частях. Поэтому

    Согласно второму уравнению системы (1) хотя бы одно из чисел а и b должно равняться нулю. Если b = 0, то из первого уравнения получается а 2 = — 1. Число а действительное, и поэтому а 2 > 0. Неотрицательное число а 2 не может равняться отрицательному числу — 1. Поэтому равенство b = 0 в данном случае невозможно. Остается признать, что а = 0, но тогда из первого уравнения системы получаем: —b 2 = — 1, b = ± 1.

    Следовательно, комплексными числами, квадраты которых равны -1, являются только числа i и —i , Условно это записывается в виде:

    Аналогичными рассуждениями учащиеся могут убедиться в том, что существует ровно два числа, квадраты которых равны отрицательному числу —а . Такими числами являются √ai и -√ai . Условно это записывается так:

    Под √a здесь подразумевается арифметический, то есть положительный, корень. Например, √4 = 2, √9 =.3; поэтому

    Если раньше при рассмотрении квадратных уравнений с отрицательными дискриминантами мы говорили, что такие уравнения не имеют корней, то теперь так говорить уже нельзя. Квадратные уравнения с отрицательными дискриминантами имеют комплексные корни. Эти корни получаются по известным нам формулам. Пусть, например, дано уравнение x 2 + 2х + 5 = 0; тогда

    х 1,2 = — 1 ± √1 -5 = — 1 ± √-4 = — 1 ± 2i .

    Итак, данное уравнение имеет два корня: х 1 = — 1 +2i , х 2 = — 1 — 2i . Эти корни являются взаимно сопряженными. Интересно отметить, что сумма их равна — 2, а произведение 5, так что выполняется теорема Виета.

    Понятие комплексного числа

    Комплексным числом называется выражение вида a + ib , где a и b – любые действительные числа, i – специальное число, которое называется мнимой единицей. Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом:

    1. Два комплексных числа a + ib и c + id называются равными тогда и только тогда, когда
      a = b и c = d .
    2. Суммой двух комплексных чисел a + ib и c + id называется комплексное число
      a + c + i (b + d).
    3. Произведением двух комплексных чисел a + ib и c + id называется комплексное число
      ac – bd + i (ad + bc).

    Комплексные числа часто обозначают одной буквой, например, z = a + ib . Действительное число a называется действительной частью комплексного числа z , действительная часть обозначается a = Re z . Действительное число b называется мнимой частью комплексного числа z , мнимая часть обозначается b = Im z . Такие названия выбраны в связи со следующими особыми свойствами комплексных чисел.

    Заметим, что арифметические операции над комплексными числами вида z = a + i · 0 осуществляются точно так же, как и над действительными числами. Действительно,

    Следовательно, комплексные числа вида a + i · 0 естественно отождествляются с действительными числами. Из-за этого комплексные числа такого вида и называют просто действительными. Итак, множество действительных чисел содержится в множестве комплексных чисел. Множество комплексных чисел обозначается . Мы установили, что , а именно

    В отличие от действительных чисел, числа вида 0 + ib называются чисто мнимыми. Часто просто пишут bi , например, 0 + i 3 = 3 i . Чисто мнимое число i1 = 1 i = i обладает удивительным свойством:
    Таким образом,

    № 4 .1. В математике числовая функция — это функция, области определения и значений которой являются подмножествами числовых множеств — как правило, множествавещественных чисел или множества комплексных чисел .

    Фрагмент графика функции

    Обычно функция задаётся с помощью формулы, в которую входят переменные, операции и элементарные функции. Возможно, кусочное задание, то есть различное для различных значений аргумента.

    Функцию можно задать, перечислив все её возможные аргументы и значения для них. После этого, если это необходимо, функцию можно доопределить для аргументов, которых нет в таблице, путём интерполяции или экстраполяции. Примерами могут служить программа передач, расписание поездов или таблица значений булевой функции:

    Осциллограмма задаёт значение некоторой функции графически.

    Функцию можно задать графически, отобразив множество точек её графика на плоскости. Это может быть приблизительный набросок, как должна выглядеть функция, или показания, снятые с прибора, например, с осциллографа. Этот способ задания может страдать от недостатка точности, однако в некоторых случаях другие способы задания вообще не могут быть применены. Кроме того, такой способ задания один из самых презентативных, удобных для восприятия и качественного эвристического анализа функции.

    Функция может быть задана рекурсивно, то есть через саму себя. В этом случае одни значения функции определяются через другие её значения.

    • факториал;
    • числа Фибоначчи;
    • функция Аккермана.

    Функцию можно описать словами на естественном языке каким-либо однозначным способом, например, описав её входные и выходные значения, или алгоритм, с помощью которого функция задаёт соответствия между этими значениями. Наряду с графическим способом, иногда это единственный способ описать функцию, хотя естественные языки и не столь детерминированы, как формальные.

    • функция, возвращающая цифру в записи числа пи по её номеру;
    • функция, возвращающая число атомов во вселенной в определённый момент времени;
    • функция, принимающая в качестве аргумента человека, и возвращающая число людей, которое родится на свет после его рождени

    Среди всего курса школьной программы алгебры одной из самых объемных тем является тема о квадратных уравнениях. При этом под квадратным уравнением понимается уравнение вида ax 2 + bx + c = 0, где a ≠ 0 (читается: а умножить на икс в квадрате плюс бэ икс плюс цэ равно нулю, где а неравно нулю). При этом основное место занимают формулы нахождения дискриминанта квадратного уравнения указанного вида, под которым понимается выражение, позволяющее определить наличие или отсутствие корней у квадратного уравнения, а также их количество (при наличии).

    Формула (уравнение) дискриминанта квадратного уравнения

    Общепринятая формула дискриминанта квадратного уравнения выглядит следующим образом: D = b 2 – 4ac. Вычисляя дискриминант по указанной формуле, можно не только определить наличие и количество корней у квадратного уравнения, но и выбрать способ нахождения этих корней, которых существует несколько в зависимости от типа квадратного уравнения.

    Что значит если дискриминант равен нулю Формула корней квадратного уравнения если дискриминант равен нулю

    Дискриминант, как следует из формулы, обозначается латинской буквой D. В случае, когда дискриминант равен нулю, следует сделать вывод, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, имеет только один корень, который вычисляется по упрощенной формуле. Данная формула применяется только при нулевом дискриминанте и выглядит следующим образом: x = –b/2a, где х – корень квадратного уравнения, b и а – соответствующие переменные квадратного уравнения. Для нахождения корня квадратного уравнения необходимо отрицательное значение переменной b разделить на удвоенное значение переменной а. Полученной выражение будет решением квадратного уравнения.

    Решение квадратного уравнения через дискриминант

    Если при вычислении дискриминанта по вышеприведенной формуле получается положительное значение (D больше нуля), то квадратное уравнение имеет два корня, которые вычисляются по следующим формулам: x 1 = (–b + vD)/2a, x 2 = (–b – vD)/2a. Чаще всего, дискриминант отдельно не высчитывается, а в значение D, из которого извлекается корень, просто подставляется подкоренное выражение в виде формулы дискриминанта. Если переменная b имеет четное значение, то для вычисления корней квадратного уравнения вида ax 2 + bx + c = 0, где a ≠ 0, можно также использовать следующие формулы: x 1 = (–k + v(k2 – ac))/a, x 2 = (–k + v(k2 – ac))/a, где k = b/2.

    В некоторых случаях для практического решения квадратных уравнений можно использовать Теорему Виета, которая гласит, что для суммы корней квадратного уравнения вида x 2 + px + q = 0 будет справедливо значение x 1 + x 2 = –p, а для произведения корней указанного уравнения – выражение x 1 x x 2 = q.

    Может ли дискриминант быть меньше нуля

    При вычислении значения дискриминанта можно столкнуться с ситуацией, которая не попадает ни под один из описанных случаев – когда дискриминант имеет отрицательное значение (то есть меньше нуля). В этом случае принято считать, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, действительных корней не имеет, следовательно, его решение будет ограничиваться вычислением дискриминанта, а приводимые выше формулы корней квадратного уравнения в данном случае применяться не будут. При этом в ответе к квадратному уравнению записывается, что «уравнение действительных корней не имеет».

    Источник статьи: http://srcaltufevo.ru/kvadratnoe-uravnenie-gde-diskriminant-raven-0-nahozhdenie-diskriminanta.html


    Adblock
    detector