Меню

Чертеж как найти точки пересечения прямой с плоскостью



Построение точки пересечения прямой и плоскости

Известно, что прямая пересекает плоскость, если она не принадлежит этой плоскости и не параллельна ей. Следуя приведенному ниже алгоритму, найдем точку пересечения прямой a с плоскостью общего положения α, заданной следами h, f.

  1. Через прямую a проводим вспомогательную фронтально-проецирующую плоскость γ. На рисунке обозначены её следы h, f.
  2. Строим проекции прямой AB, по которой пересекаются плоскости α и γ. В данной задаче точка B’ = h ∩ h, A» = f ∩ f. Точки A’ и B» лежат на оси x, их положение определяется по линиям связи.
  3. Прямые a и AB пересекаются в искомой точке K. Её горизонтальная проекция K’ = a’ ∩ A’B’. Фронтальная проекция K» лежит на прямой a».

Алгоритм решения останется тем же, если пл. α будет задана параллельными, скрещивающимися прямыми, отсеком фигуры или другими возможными способами.

Видимость прямой a относительно плоскости α. Метод конкурирующих точек

  1. Отметим на чертеже фронтально-конкурирующие точки A и С (рис. ниже). Будем считать, что точка A принадлежит пл. α, а С лежит на прямой a. Фронтальные проекции A» и С» совпадают, но при этом т. A и С удалены от плоскости проекций П2 на разное расстояние.
  2. Найдем горизонтальные проекции A’ и C’. Как видно на рисунке, точка C’ удалена от плоскости П2 на большее расстояние, чем т. A’, принадлежащая пл. α. Следовательно, участок прямой а», расположенный левее точки K», будет видимым. Участок a» правее K» является невидимым. Отмечаем его штриховой линией.
  3. Отметим на чертеже горизонтально-конкурирующие точки D и E. Будем считать, что точка D принадлежит пл. α, а E лежит на прямой a. Горизонтальные проекции D’ и E’ совпадают, но при этом т. D и E удалены от плоскости П1 на разное расстояние.
  4. Определим положение фронтальных проекций D» и E». Как видно на рисунке, точка D», находящаяся в пл. α, удалена от плоскости П1 на большее расстояние, чем т. E», принадлежащая прямой a. Следовательно, участок а’, расположенный правее точки K’, будет невидимым. Отмечаем его штриховой линией. Участок a’ левее K’ является видимым.

Источник статьи: http://ngeometry.ru/peresechenie-pryamoy-i-ploskosti-v-nachertatelnoy-geometrii.html

Чертеж как найти точки пересечения прямой с плоскостью

Точка пересечения прямой и плоскости

Рассмотрим пошаговую инструкцию построения точки пересечения прямой общего положения с плоскостью общего положения.Отметим, что построение точки пересечения прямой и плоскости — это одна из основ решения задач по предмету начертательная геометрия, не освоив которую дальнейшее понимание предмета будет достаточно трудным.

Порядок построения точки пересечения прямой и плоскости

1. Заключим прямую а во вспомогательную фронтально-проецирующую плоскость (плоскость перпендикулярную фронтальной плоскости проекции). На фронтальной проекции она сольется с прямой а. Очевидно, что линия m пересечения этой плоскости с плоскостью треугольника АВС на фронтальной проекции так же будет сливаться с прямой а (а=m).

2. Определим фронтальные проекции двух точек этой линии m: точки 1 и 2.

3. Найдем их горизонтальные проекции.

4. Соединим горизонтальные проекции точек 1 и 2 — получим горизонтальную проекцию прямой m (которая является линией пересечения вспомогательной плоскости с плоскостью треугольника АВС, и соответственно принадлежит обеим плоскостям). Так как прямая а принадлежит вспомогательной плоскости, и прямая m принадлежит ей же, то точка пересечения этих прямых К и есть точка пересечения прямой а с плоскостью треугольника АВС.

5. С помощью линии связи найдем фронтальную проекцию точки пересечения К.

6. Осталось только определить видимость прямой а. Это можно сделать с помощью метода конкурирующих точек.

Обратите внимание, что мы начали поиск точки пересечения прямой с плоскостью с того, что заключили прямую а во вспомогательную фронтально-проецирующую плоскость. Точно таким же образом можно было заключить прямую а в горизонтально-проецирующую плоскость, и тогда бы построения начались как бы «снизу вверх», но смысл остался бы точно таким же, как и конечное решение — точка пересечения прямой с плоскостью.

Внимание! Для этой темы есть видеоурок.

Вы можете сказать «спасибо!» автору статьи:

пройдите по любой из рекламных ссылок в левой колонке, этим вы поддержите проект «White Bird. Чертежи Студентам»

или запишите наш телефон и расскажите о нас своим друзьям — кто-то наверняка ищет способ выполнить чертежи

или создайте у себя на страничке или в блоге заметку про наши уроки — и кто-то еще сможет освоить черчение.

А вот это — не реклама. Это напоминание, что каждый из нас может сделать. Если хотите — это просьба. Мы действительно им нужны:

Автор комментария: Дмитрий
Дата: 2012-08-16

Очень легко и понятно вы описали как найти точку пересечения прямой и плоскости, мегареспект!

Автор комментария: Алексндр
Дата: 2012-11-02

Автор комментария: Студент
Дата: 2012-11-14

Сделайте нормальные чертежи. Без анимации пошаговые.
Оставляйте адрес, может вам и будет подарок. Новый год ведь скоро 🙂

Автор комментария: Михаил
Дата: 2013-01-31

А вот нечего торопиться. Надо покушать как следует, сесть и всмотреться в гифку. Тогда и познаешь дзен. 🙂

Не торопиться, быть сытым и выспавшимся — да, это отличное подспорье. Спасибо за то, что указали на столь важные моменты. Да прибудет с вами сила, Михаил!

Автор комментария: Настя
Дата: 2013-03-08

Помогите пожалуста. у меня плоскость перпендикулярна фронтальной плоскости проекции и задана следами, а прямая горизонтальна горизонтальной плоскости проекций

Автор комментария: Евгений
Дата: 2014-12-21

Это простооо кул,все понятно,мегареспект вам!!

Автор комментария: Георгий
Дата: 2014-12-28

4. Соединим горизонтальные проекции точек 1 и 2 — получим горизонтальную проекцию прямой m (которая является точкой пересечения вспомогательной плоскости с плоскостью треугольника АВС. Тут надо исправить: прямая не может являться точкой. Также отсутствует закрывающая скобка.

Автор комментария: Дмитрий
Дата: 2015-05-01

Я всё равно ничего не понял. Хоть на первый взгляд это более толковое объяснение решения, чем пишут в книгах — там ваще мрак.

Автор комментария: Лиля
Дата: 2015-09-22

Высший класс! Ключевое предложение для понимания сути: «Заключим прямую а во вспомогательную фронтально-проецирующую плоскость . «

Эмм. Это сарказм? 🙂 Если да, то в свое оправдание могу сказать лишь то, что терминология должна быть вам в некоторой мере знакома. С меня лишь графический порядок решения. Но с другой стороны давать его в абсолютном отрыве от теории тоже нехорошо. Указанная в вашем комментарии фраза пригодится вам на экзамене, или как минимум на защите данной работы. Но для графического решения прямо сейчас она не так важна. Просто выполняйте по шагам.

Автор комментария: Лия
Дата: 2015-10-22

Автор комментария: Василий
Дата: 2016-10-13

Спасибо огромное.Всё доходчиво и ясно!

Автор комментария: Олег
Дата: 2016-11-17

Как быть если прямая на П2 перпендикулярна Ох, а на П1 в точку проэцируется?

Добавьте свой комментарий:

Заказ выполнен точно в срок, качественно. Общаются вежливо,идут на встречу. Огромное спасибо! Буду советовать всем!

Источник статьи: http://www.trivida.ru/chertezhi_view_post.php?id=16

Пересечение прямой с плоскостью

Задача на пересечение прямой с плоскостью — это одна из основных задач, с ее применением сталкиваются при рассмотрении сечения тел плоскостями и пересечения поверхностей.

Нахождение точки встречи прямой с плоскостью, заданной пересекающимися прямыми

Плоскость и пересекающая ее прямая занимают общее положение.

(γα) = l — прямая, пересекающаяся с прямой b.

На пересечение прямой с плоскостью составляем алгоритм нахождения их точки встречи :

1) проводим через b` горизонтальный след γH — горизонтально-проецирующей плоскости γ;

2) определяем фронтальную проекцию линии пересечения l, вспомогательной секущей плоскости γ с данной плоскостью α, используя для этого точки 1` и 2` (принадлежащие данной прямой), в которых горизонтальный след γH пересекает прямые c` и d`;

3) определяем точку K»=. Зная K», находим K` на пересечении b` с линией проекционной связи.

Нахождение точки встречи прямой с плоскостью, заданной параллельными прямыми

Задача по нахождению точки встречи прямой с плоскостью заданной следами.

Алгоритм решения не меняется, если плоскость будет задана параллельными прямыми или прямыми, по которым она пересекает плоскости проекций (следы плоскости).

При решении задач на пересечение прямой с плоскостью в качестве вспомогательных плоскостей применяют проецирующие плоскости. Но в случае, например, профильной прямой они бесполезны и тогда надо применить плоскость общего положения.

Найти точку встречи профильной прямой AB с плоскостью α заданной следами

Алгоритм выполнения геометрических построений: 1) Заключаем отрезок AB во вспомогательную секущую плоскость общего положения β; 2) Определяем проекции линии пересечения 1-2, вспомогательной секущей плоскости β с данной плоскостью α; 3) Определяем проекцию точки K на пересечении 1″-2″ с прямой A»B». Проекция K` точки K может быть найдена: — на пересечении A`B` с 1`-2`; — или как принадлежащая плоскостям α и β.

Найти точку встречи прямой d с плоскостью α(b, c), определить видимость

Алгоритм выполнения геометрических построений: 1) Заключаем прямую d во вспомогательную секущую фронтально проецирующую плоскость δ; 2) Определяем проекции линии пересечения 1-2, вспомогательной секущей плоскости δ с данной плоскостью α; 3) Определяем проекцию K` точки K на пересечении 1`-2` с прямой d`. Проекцию точки K находим в пересечении с линией проекционной связи.

Данный способ решения задачи — найти точку встречи профильной прямой с плоскостью заданной следами применен в статье: Сечение пирамиды плоскостью

Определение видимости пересечения прямой с плоскостью на плоскостях проекций выполняем, используя Конкурирующие точки 2, 3 и 4, 5.

Источник статьи: http://ngeo.fxyz.ru/%D0%BF%D0%BE%D0%B7%D0%B8%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B5_%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8/%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D1%80%D1%8F%D0%BC%D0%BE%D0%B9_%D1%81_%D0%BF%D0%BB%D0%BE%D1%81%D0%BA%D0%BE%D1%81%D1%82%D1%8C%D1%8E/


Adblock
detector