Меню

Чему равно cos 360 как найти



Содержимое

cos 360

Здравствуйте!
Нужна Ваша помощь в вычислении тригонометрического выражения cos 360. Объясните, пожалуйста, какие есть способы его вычислить.
Спасибо!

cos 360 градусов можно посчитать устно, представив себе график этой функции, который несложно запомнить.


360 градусов соответствует углу 2Пи. Проведя перпендикуляр (как на рисунке) из этого значения до пересечения с графиком, а затем перпендикуляр из полученной точки на графике до оси Оу, получит значение косинуса 360 градусов, равное единице.
Также косинус от наиболее часто используемых углов можно найти с помощью тригонометрической окружности.

Значения косинусов лежат на оси абсцисс. Найдем на окружности 360 точку, соответствующую углу 360 градусов и спроецируем эту точку на ось абсцисс. Получим значение 1. Таким образом, косинус от 360 градусов равен 1.
Самым распространенным способом в школе является использование таблицы.

По таблице находим столбец со значением 360 градусов и строку со значением cos. На их пересечении получаем значение косинуса 360 градусов, равное 1. Итак:

Источник статьи: http://ru.solverbook.com/question/cos-360/

Чему равен косинус 360° градусов — cos(360°)?

Мне нужно знать точное значение косинуса 360° градусов cos(360°) и еще cos(15°) и cos(30°)

Математика — это такая наука в которой нужно и важно точно определять все значения. Каждый косинус будет иметь свое универсальное значение, которое не так уж и сложно вычислить. Тригонометрия — это сложная наука в которой могут потребоваться определенные знания математики для точных вычислений некоторых значений.

Косинус 360 градусов можно определить двумя способами. Первый способ заключается в математическом расчете. Это непростой способ. При втором способе косинус вычесть намного проще и с ним справится любой. Для этого вам просто нужно будет взять таблицу Брадиса и найти его значение. Косинус 360 градусов будет равен 1.

Косинус 360 — как его рассчитать и чему он равен?

Если рассматривать математические термины и формулы по формулам и правилам — рассчитать можно практически все, за исключением самых сложных задач, за решение которых самому гениальному математику могут вручить Нобелевскую премию и весомый финансовый приз.

При этом школьникам данное вычисление крайне сложно для понимания, поэтому детям приводится уже готовая таблица с решениями. Остается ее лишь заучить на зубок, как таблицу умножения, а остальное дело техники и примеры решить будет очень просто!

Также есть инженерный калькулятор, который позволит рассчитать косинус 360 градусов, который равен ровно 1. Поэтому значение cos 360 — запомнить можно быстро.

В остальном придется учить таблицу, разработанную ранее известным математиком, Брадисом.

Ее лучше всего распечатать на обычной бумаге, приклеить заднюю сторону картону и обклеить скотчем, чтобы не заляпать и не затереть. Затем на любом уроке алгебры можно достать свою «подсказку» и применить ее в решении. Занятие на десять минут, зато выручит ребенка неоднократно! Поэтому не поленитесь потратить немного времени!

Интересные ознакомительные материалы, которые смежны по теме:

Источник статьи: http://vovet.ru/q/chemu-raven-kosinus-360-gradusov-cos360-2r.html

Как найти синус и косинус углов в градусах без тригонометрической таблицы?

В статье мы расскажем, как находить значения:

и других тригонометрических выражений без тригонометрической таблицы .

Как вычисляются синусы и косинусы углов?

Чтобы вычислить косинус и синус некоторого угла нужно:
1. Отложить этот угол на тригонометрическом круге и определить какая точка соответствует этому углу;
2. Найти абсциссу и ординату этой точки. Косинус угла равен — абсциссе, а синус угла — ординате.

Предположим, стоит задача найти косинус и синус угла (30^°). Отложим на круге угол в (30^°) и найдем какая точка соответствует этому углу.

Если построить все точно, то видно, что абсцисса точки равна (0,866)… , что равно числу (frac><2>) , а ордината равна (0,5), то есть (frac<1><2>).

Аналогично и для любой другой точки на круге: значение абсциссы равно косинусу угла, а ординаты – синусу угла. Поэтому:

В тригонометрии ось абсцисс (ось x) часто называют «ось косинусов», а ординат (ось y) – «ось синусов».

Обычно на осях не отмечают (0,1); (0,2); (0,3) и т.д., а сразу наносят стандартные значения для синуса и косинуса: (±frac<1><2>=±0,5); (±frac> <2>≈±0,707); (±frac> <2>≈±0,866).

Первый шаг к тому, чтобы находить синусы и косинусы стандартных углов – научится отмечать эти углы на тригонометрическом круге.

Как отметить любой угол на тригонометрическом круге?

Чтоб отложить положительный угол нужно двигаться против часовой стрелки от начала отсчета, чтобы отметить отрицательный – по часовой стрелке;

Градусная мера окружности равна (360^°), полуокружности (180^°), а четверти (90^°);

Углы в (0^°), (30^°), (45^°) и (60^°) выглядят так:

  • Одна точка может соответствовать разным углам;
  • Угол может быть больше (360^°). В этом случае он просто сделает полный оборот и пойдет дальше. Фактически, можно (360^°) просто отбросить и откладывать тот угол, который останется – в итоге вы всё равно окажетесь в той же точке.

Задание 1 . Отметьте на окружности точки соответствующие углам: (720^°), (225^°), (300^°), (870^°), (900^°), (-330^°), (-630^°), (-210^°).

Как находить синус и косинус любого угла?

  1. Начертите тригонометрический круг и оси косинусов и синусов (не обязательно рисовать прям аккуратно, как на картинке ниже, можно и некрасиво – главное не запутаться какая точка к какому значению относится).
  2. Отложите на круге угол, синус и косинус которого надо найти, и определите точку на круге, соответствующую этому углу.
  3. Найдите координаты точки, используя картинку ниже.

(-540^°) на тригонометрическом круге совпадает с (-1) на оси косинусов. То есть, координаты этой точки: ((-1;0)). Значит, (cos⁡(-540^°)=-1), а (sin⁡(-540^° )=0).

Да, имея перед глазами тригонометрический круг, вычислять синусы и косинусы любых углов легко. Возможно, у вас возник вопрос: «а что делать, если круга нет? Как делать такие вычисления на ЕГЭ?». Ответ очевиден – нарисовать круг самому! Для этого надо понять, как располагаются значения на нем. Подробную методику того, как это делается я рассказывала в этой статье .

Есть и другой способ запомнить тригонометрический круг – внимательно посмотреть на картинку ниже и запомнить максимальное количество элементов. После прикройте страницу и по памяти нарисуйте круг и отметьте всё, что смогли запомнить. Сверьте, что у вас получилось с тем, что было на картинке. Повторяйте эту последовательность действий пока по памяти не получится нарисовать тригонометрический круг со всеми значениями. Это займет 15 минут вашего времени, но сильно поможет в 13 задаче ЕГЭ (и не только в ней).

Примеры вычисления синуса и косинуса из ЕГЭ

В двух следующих примерах я специально рисовала круг от руки, чтобы вы увидели, как выглядят реальные решения.

Пример . Найдите значение выражения (54sqrt<3>cos⁡(510^°)).
Решение. (510^°=360^°+150^°=360^°+180^°-30^°.)

Источник статьи: http://cos-cos.ru/ege/zadacha209/357/

Как найти синус и косинус углов в градусах без тригонометрической таблицы?

В статье мы расскажем, как находить значения:

и других тригонометрических выражений без тригонометрической таблицы .

Как вычисляются синусы и косинусы углов?

Чтобы вычислить косинус и синус некоторого угла нужно:
1. Отложить этот угол на тригонометрическом круге и определить какая точка соответствует этому углу;
2. Найти абсциссу и ординату этой точки. Косинус угла равен — абсциссе, а синус угла — ординате.

Предположим, стоит задача найти косинус и синус угла (30^°). Отложим на круге угол в (30^°) и найдем какая точка соответствует этому углу.

Если построить все точно, то видно, что абсцисса точки равна (0,866)… , что равно числу (frac><2>) , а ордината равна (0,5), то есть (frac<1><2>).

Аналогично и для любой другой точки на круге: значение абсциссы равно косинусу угла, а ординаты – синусу угла. Поэтому:

В тригонометрии ось абсцисс (ось x) часто называют «ось косинусов», а ординат (ось y) – «ось синусов».

Обычно на осях не отмечают (0,1); (0,2); (0,3) и т.д., а сразу наносят стандартные значения для синуса и косинуса: (±frac<1><2>=±0,5); (±frac> <2>≈±0,707); (±frac> <2>≈±0,866).

Первый шаг к тому, чтобы находить синусы и косинусы стандартных углов – научится отмечать эти углы на тригонометрическом круге.

Как отметить любой угол на тригонометрическом круге?

Чтоб отложить положительный угол нужно двигаться против часовой стрелки от начала отсчета, чтобы отметить отрицательный – по часовой стрелке;

Градусная мера окружности равна (360^°), полуокружности (180^°), а четверти (90^°);

Углы в (0^°), (30^°), (45^°) и (60^°) выглядят так:

  • Одна точка может соответствовать разным углам;
  • Угол может быть больше (360^°). В этом случае он просто сделает полный оборот и пойдет дальше. Фактически, можно (360^°) просто отбросить и откладывать тот угол, который останется – в итоге вы всё равно окажетесь в той же точке.

Задание 1 . Отметьте на окружности точки соответствующие углам: (720^°), (225^°), (300^°), (870^°), (900^°), (-330^°), (-630^°), (-210^°).

Как находить синус и косинус любого угла?

  1. Начертите тригонометрический круг и оси косинусов и синусов (не обязательно рисовать прям аккуратно, как на картинке ниже, можно и некрасиво – главное не запутаться какая точка к какому значению относится).
  2. Отложите на круге угол, синус и косинус которого надо найти, и определите точку на круге, соответствующую этому углу.
  3. Найдите координаты точки, используя картинку ниже.

(-540^°) на тригонометрическом круге совпадает с (-1) на оси косинусов. То есть, координаты этой точки: ((-1;0)). Значит, (cos⁡(-540^°)=-1), а (sin⁡(-540^° )=0).

Да, имея перед глазами тригонометрический круг, вычислять синусы и косинусы любых углов легко. Возможно, у вас возник вопрос: «а что делать, если круга нет? Как делать такие вычисления на ЕГЭ?». Ответ очевиден – нарисовать круг самому! Для этого надо понять, как располагаются значения на нем. Подробную методику того, как это делается я рассказывала в этой статье .

Есть и другой способ запомнить тригонометрический круг – внимательно посмотреть на картинку ниже и запомнить максимальное количество элементов. После прикройте страницу и по памяти нарисуйте круг и отметьте всё, что смогли запомнить. Сверьте, что у вас получилось с тем, что было на картинке. Повторяйте эту последовательность действий пока по памяти не получится нарисовать тригонометрический круг со всеми значениями. Это займет 15 минут вашего времени, но сильно поможет в 13 задаче ЕГЭ (и не только в ней).

Примеры вычисления синуса и косинуса из ЕГЭ

В двух следующих примерах я специально рисовала круг от руки, чтобы вы увидели, как выглядят реальные решения.

Пример . Найдите значение выражения (54sqrt<3>cos⁡(510^°)).
Решение. (510^°=360^°+150^°=360^°+180^°-30^°.)

Источник статьи: http://cos-cos.ru/ege/zadacha209/357/


Adblock
detector